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a b s t r a c t 

The complexity of modern communication networks makes the solution of the Markov chains that model 

their traffic dynamics, and therefore, the determination of their performance parameters, computationally 

costly. However, a common characteristic of these networks is that they manage multiple types of traf- 

fic flows operating at different time-scales. This time-scale separation can be exploited to substantially 

reduce the computational cost. Following this approach, we propose a novel solution method named Ab- 

sorbing Markov Chains Approximation (AMCA) based on the transient regime analysis. Briefly, we model 

the time the system spends in a series of subsets of states by a phase-type distribution and, for each 

of them, determine the probabilities of finding the system in each state of this subset until absorption. 

We compare the AMCA performance to that obtained by classical methods and by a recently proposed 

approach that aims at generalizing the conventional quasi-stationary approximation . We find that AMCA 

has a more predictable behavior, is applicable to a wider range of time-scale separations, and achieves 

higher accuracy for a given computational cost. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Nowadays, wireless communication networks incorporate so- 

phisticated technology and algorithms to provide a wide range of 

services. In order to evaluate their performance and to understand 

the interactions among different com ponents of these rather com- 

plex networks, the deployment of analytical models has become a 

common approach with multiple advantages. Accurate modeling of 

the wireless network events allows to determine performance pa- 

rameters like the blocking probability, throughput, average transfer 

delay, and others [1,2] . 

The increasing complexity of wireless networks in terms of size, 

different configurations, and the interactions among types of traffic 

flows makes modeling more challenging. From the modeling per- 

spective, we normally encounter two main common characteris- 

tics in continuous-time Markov chain (CTMC) models of wireless 

networks. First, the cardinality of the state-space of their CTMC is 

large. Second, the multiple types of traffic flows evolve at different 

time-scales. 

While, the first characteristic usually makes the exact solution 

of the CTMC computationally intractable, the second one allows us 

to apply specific solution approaches that exploit the time-scale 
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separation to reduce the computational cost. We can structure the 

model into subsets of states by using the fact that transitions oc- 

cur at a fast time-scale in the states belonging to the same sub- 

set, while transitions between subsets occur at a slower time-scale. 

Then, we can approximate the solution of the stationary prob- 

ability distribution of the complete system by computing sepa- 

rately the stationary distribution of each subset, and then combin- 

ing them to obtain the stationary distribution of the complete sys- 

tem. Once this is achieved, the performance metrics of the wireless 

network can be easily computed [3,4] . 

The analysis of wireless networks based on time-scale separa- 

tion has been proposed in recent studies [5–12] . In many of them, 

the so-called quasi-stationary approximation (QSA) has been shown 

to be accurate and computationally efficient [6,9–11] . However, 

when the gap between time-scales shortens, the accuracy of the 

method deteriorates to a point in which the method is no longer 

useful from a practical perspective. 

In [7] a generalization of QSA (called GQSA) has been proposed. 

It can adjust the accuracy with a parameter called radius ( R ). In a 

recent study [13] we showed that, in some network scenarios, the 

accuracy achieved with GQSA improves as R increases. However, 

in other scenarios increasing R reduces the accuracy. More impor- 

tantly, it is difficult to predict the scenarios in which the accuracy 

can be improved by increasing R . 

The main contribution of this paper is a new approximation 

method applicable to a wide range of time-scale separations, and 
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whose accuracy can be improved by increasing the computational 

cost. The proposed method is based on an original iterative ap- 

proach named Absorbing Markov Chains Approximation (AMCA). In 

AMCA, the Markov model of the network is structured in levels 

and phases. Then, we analyze the transient regime at each level 

to determine the fraction of time that the system spends at each 

of its phases until a level change occurs. Once these fractions of 

time are found for all phases in all levels, a new approximation 

of the stationary distribution of the complete system is computed. 

We repeat the procedure until a predefined accuracy is satisfied. 

This iterative procedure is initialized with the solution obtained by 

QSA. 

To evaluate the proposed method, we used it to analyze two 

different networks. One is a cognitive radio network (CRN) with 

two channel sets: one shared by primary and secondary users, and 

the other dedicated to the secondary users [14,15] . The other is 

an integrated service network (ISN), where a single base station 

serves real-time and non-real-time traffic [16,17] . We will refer to 

these two networks as the test networks . Note that we selected 

these test networks to apply the new approximation method to the 

same scenarios employed by previous approximate methods based 

on time-scale separation so that a fair comparison is carried out. 

Specifically, the CRN scenario was employed in [6] and the ISN sce- 

nario in [7] . However, the selection of these test networks does not 

limit the applicability of AMCA in any way. 

We carry out two types of analysis in the test networks. First, 

we evaluate the behavior of AMCA at different time-scale separa- 

tions. Second, we study the trade-off between accuracy and com- 

putational cost. We compare the performance of AMCA with that 

of QSA, GQSA, and a classical iterative method named iterative ag- 

gregation/disaggregation (IAD), which is particularly suited to these 

type of systems [4, Sect. 10.5] . Considering the range of time-scale 

separations at which we obtain an acceptable accuracy, the results 

show that AMCA outperforms the other methods. 

The rest of the paper is structured as follows. Section 2 de- 

tails the characteristics of the test networks analyzed and their 

associated CTMC models. Section 3 describes the quasi-stationary 

approximation and the related approximation methods based on 

time-scale separation. In Section 4, we present our approximation 

method called AMCA. Section 5 shows the numerical evaluation 

and the results. Finally, Section 6 draws the conclusions. 

2. Wireless networks description and modeling 

In this section, we detail the main characteristics of the test 

networks. We describe the performance metrics of interest and de- 

fine a two-dimensional CTMC model for each network. 

2.1. Cognitive radio network 

As in [6,18] , we model the primary user (PU) and secondary 

user (SU) traffic at the session (connection) level and ignore inter- 

actions at the packet level (scheduling, buffer management, etc.). 

We assume an ideal MAC layer for SUs, which allows a perfect 

sharing of the allocated channels among the active SUs (all active 

SUs get the same bandwidth portion), introduce zero delay and 

whose control mechanisms consume zero resources. In addition, 

we also assume that an active SU can sense the arrival of a PU 

in the same channel instantaneously and reliably. In this sense, the 

performance parameters obtained can be considered as an upper 

bound. 

The cognitive radio network has C 1 primary channels (PCs) that 

can be shared by PUs and SUs, and C 2 secondary channels (SCs) 

only for SUs. Let C = C 1 + C 2 be the total number of channels in the 

network. Note that the SCs can be obtained from e.g., unlicensed 

bands, as proposed in [18] . This assumption is applicable to the 

coexistence deployment scenario for CRNs. Alternatively, as it might 

be of commercial interest for the primary and secondary networks 

to cooperate , the secondary channels may be obtained based on an 

agreement with the primary network [19] . A SU in the PCs might 

be forced to vacate its channel if a PU claims it to initiate a new 

session. As SUs support spectrum handover , a vacated SU can con- 

tinue with its ongoing communication if a free channel is available. 

Otherwise, it is forced to terminate . 

For the sake of mathematical tractability, Poisson arrivals and 

exponentially distributed service times are assumed. The arrival 

rate for PU (SU) sessions is λ1 ( λ2 ), their service rate is μ1 ( μ2 ), 

and requests consume 1 (1) channel when are accepted. 

We denote by ( i, j ) the network state, when there are i on- 

going PU sessions and j SU sessions. The set of feasible states 

is S := { ( i, j ) : 0 ≤ i ≤ C 1 , 0 ≤ i + j ≤ C} and the cardinality of S is 

| S | = (C 1 / 2 + C 2 + 1)(C 1 + 1) . The state-transition diagram of the 

network is depicted in Fig. 1 . Given the set of feasible states and 

the transition rates among them, the global balance equations can 

be defined. Finally, the global balance equations together with the 

normalization equation can be solved to obtain the steady-state 

probabilities denoted as π ( i, j ). 

The network performance parameters are determined as fol- 

lows: 

P pu = 

C 2 ∑ 

k =0 

π(C 1 , k ) , P su = 

C ∑ 

k = C 2 
π(C − k, k ) , (1) 

P f t = 

λ1 (P su − π(C 1 , C 2 )) 

λ2 (1 − P su ) 
, (2) 

T h su = 

C ∑ 

j=1 

Z ∑ 

i =0 

j μ2 · π(i, j ) , (3) 

where P pu is the PUs blocking probability, which clearly coincides 

with the one obtained in an Erlang-B loss model with C 1 servers; 

P su is the SUs blocking probability, i.e., the fraction of SU sessions 

rejected upon arrival as they find the network full; P ft is the forced 

termination probability of the SUs, i.e., the rate of SU sessions 

forced to terminate divided by the rate of accepted SU sessions; 

Th su is the SUs throughput, i.e., the rate of SU sessions successfully 

completed, and Z = min (C 1 , C − j) . 

2.2. Integrated service network 

We use the same model defined in [7,17] for an integrated ser- 

vice network, where a single base station serves real-time (RT) and 

non-real-time (NRT) traffic. We consider that a link with a total ca- 

pacity of C Mbps is shared among RT and NRT communications. 

We assume that all RT calls (sessions) are of the same class and 

are given strict priority over the NRT traffic. We denote by N rt the 

maximum number of channels for RT calls. When a RT call arrives, 

it occupies 1 channel (if available) of rate c bps. Note that a RT call 

occupies 1 channel during its entire service duration to meet its 

required QoS; otherwise, it is blocked. We set N rt , such that N rt ·
c is sufficiently smaller than C to avoid starvation of the NRT traf- 

fic. Let n rt ( t ) be the stochastic process number of RT calls in the 

network at time t, t ≥ 0. 

The capacity not used by the RT traffic is evenly shared by the 

NRT flows according to the processor sharing (PS) discipline. Let 

n nrt ( t ) be the stochastic process number of NRT flows in the net- 

work at time t, t ≥ 0. Then, {( n rt ( t ), n nrt ( t ))} is the joint RT and 

NRT stochastic process. The available capacity for the NRT traffic 

at time t is given by C nrt (t) = C − n rt (t) · c . The bit-rate of each 

admitted NRT flow at time t is c nrt (t) = C nrt (t) /n nrt (t) , and it is 

updated after any RT or NRT accepted arrivals or departures. To 

satisfy the QoS of admitted NRT flows, the maximum number of 
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