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It is well  known  that  total variation  (TV)  regularizer  leads  to the staircase  effect,  the  higher  order  varia-
tional  methods  give  rise  to  the  restored  image  blurred.  In this  paper,  we  propose  a  novel  variational  model
for multiplicative  noise  removal.  The  proposed  model  can automatically  adjust  the  first  and  second  order
regularization  terms.  To  solve  such  an  objective  function  effectively,  the  split  Bregman  and  primal-dual
methods  are  employed  in  our numerical  algorithm.  Our  experimental  results  show  that  the  proposed
method  is  more  effective  to filter  out  the  multiplicative  noise  compared  with  the  recent  methods.
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1. Introduction

Image denoising is one of the fundamental problems in image
processing and computer vision fields. For many special imag-
ing systems such as synthetic aperture radar, laser or ultrasound
imaging, and positron emission tomography, image acquisition
processes are different from the usual optical imaging technology,
and they may  be distorted by some unexpected random noise and
the standard additive Gaussian noise model is not suited in these
situations. However, the multiplicative noise model provides an
appropriate description of these special imaging systems. In this
paper, we focus on the issue of multiplicative noise removal. The
noise model is

f0 = f�, (1)

where f0 is the observed image, f is the original image, � is the noise
which follows a Gamma  Law with mean one and its probability
density function is given by

g(�) = LL

� (L)
�L−1 exp(−L�), (2)

where L is the number of looks (in general, an integer coefficient),
and � (·) is a Gamma  function. Multiplicative noise is one of the
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complex noise models. It is signal independent, non-Gaussian, and
spatially dependent. Hence, multiplicative noise removal is a very
challenging problem compared with additive Gaussian noise.

For tackling the problem, many approaches have been proposed.
Popular methods include the Lee method [1], the multiscale shrink-
age methods [2], various anisotropic diffusion based methods [3,4],
and variational methods [5–15]. The first TV based multiplicative
noise removal model was presented by Rudin et al. [7], which used a
constrained optimization approach with two  Lagrange multipliers.
Following the maximum a posteriori estimator for multiplicative
Gamma  noise, Aubert and Aujol [8] introduced a non-convex model
(AA)

min
f

{∥∥f
∥∥

TV
+ �

∫
˝

(
log f + f0

f

)
dx

}
, (3)

where
∥∥f
∥∥

TV
=
∫

˝

∣∣∇f
∣∣dx is the TV regularization term,∫

˝(log f + (f0/f)) dx is the data fidelity term, and � > 0 is the
regularization parameter. However, the data fidelity term is non-
convex, it dose not have the global minimal solution. By the noisy
observation, Shi and Osher [9] derived a strictly convex model (SO)

min
ω

{
‖ω‖TV + �

∫
˝

(f0 exp(−ω) + ω) dx

}
, (4)

where ω = log f. To solve the model, the authors applied a relaxed
inverse scale space flow method. Although this method has an
excellent denoising effect and significant improvement over ear-
lier multiplicative noise removal models, it needs a lot of time
to run the iteration. To improve the speed of operation, a new
variational model was  introduced by Huang et al. [10] through
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variable splitting. The corresponding minimization problem was
given by

min
z,ω

‖ω‖TV + �

∫
˝

(f0 exp(−z) + z) dx + �‖z − ω‖2
2. (5)

Eq. (5) was solved by using an alternating minimization method and
the estimated restoration image f∗ = exp(z∗). The proposed method
is fast, since the subproblem with respect to z is fast solved by
using Newton’s method; the subproblem with respect to ω is typical
ROF denoising problem, which is efficiently solved by dual method.
However, Eq. (5) becomes severely ill-conditioned when � is very
large. Considering such a difficulty, Bioucas and Figueiredo [11]
proposed a new multiplicative noise removal model by combing
operator splitting with augmented Lagrangian method. In addition,
Steidl and Teuber [12] also proposed a convex model, in which the
I-divergence is used as the fidelity term. In order to use the local sta-
tistical characteristics of image, Chen et al. [13] proposed a spatially
adapted total variational model to remove multiplicative noise. The
advantage of this model is that the regularization parameters are
automatically selected and the image details were preserved well.

Recently, sparse variational models have been widely applied
to image processing because they can preserve the geometrical
structures of the restoration images very well. Durand,et al. [14]
proposed a hybrid method composed of an l1 data-fitting for the
curvelet frame coefficients and TV. Combined the weighted TV with
the data terms in Eq. (4), a non-convex sparse regularizer vari-
ational model is proposed [15]. The advantage of this model is
that it overcomes the disadvantage of the non-convexity and turns
the non-convex variational model into several convex ones by use
of the augmented Lagrange multiplier method and the iteratively
reweighted method.

However, the TV regularization suffers from the so-called stair-
case effect, namely, the transformation of smooth regions into
piecewise constant ones, which may  produce undesirable blocky
images. In order to reduce the staircase effect, some higher order
partial differential equations (PDEs) were introduced [16,17]. These
methods are based on minimizing the total variation of image gra-
dient or the derivatives of the image rather than the total variation
of the image itself. However, the fourth-order PDEs can make the
edges and textures of those restoration images blurry.

In recent years, some lower order variational models have
started to appear as the very efficient methods for image denoising
[18–25], which are capable of restoring edges and discontinuities
in a better way than the fourth-order PDE. Inspired by the idea
in [25], we will give a novel variational model for multiplicative
noise removal in this paper. The new model takes advantage of
the restored log image information to remove noise. In addition,
to solve the proposed model effectively, we design the split Breg-
man  and primal-dual algorithms. From the experimental results,
we see that the new model is more effective for multiplicative noise
removal.

The outline of this paper is as follows. In Section 2, a new
variational model and an effective algorithm are designed for mul-
tiplicative noise removal. In Section 3, some experimental results
are demonstrated the qualities of the restored images. Finally, con-
clusions are given in Section 4.

2. The proposed model and algorithm for multiplicative
noise removal

2.1. The proposed model

In [25], the authors proposed a variational model using the L1
fidelity term of the gradient and a vector field and successfully
alleviated the staircase effect for the additive Gaussian noise. So

inspired by this idea, we let v be the vector field of the log image, and
propose the following variational model for multiplicative noise
removal:

min
ω,v

˛1

∫
˝

∣∣∇ω − v
∣∣dx + ˛2

∫
˝

∣∣∇v
∣∣dx +

∫
˝

(f0 exp(−ω) + ω) dx,

(6)

where ω = log f, the first term and the third term is the fidelity term,
the second term is the regularization term. ˛1, ˛2 are non-negative
regularization parameters.

Remark some properties of the proposed model. First, the pro-
posed model has only one energy functional which is different from
[21–23], ω and v can be mutually made full use of each other, that
is, the smoothed vector field v depends on the restored image ω. In
addition, v is a vector field of the log image, not the vector field of
the original image, which is different from [25].

Second, from the first and second terms of the proposed model,
we can intuitively see that when v approaches ∇ω and the above
two terms turn into the second order derivative term; when v
approaches zero, the above two terms turn into the total varia-
tional regularization term. So compared with Eqs. (3)–(5) and the
model in [15], the proposed model can automatically balance the
first and second order derivatives through parameters ˛1 and ˛2.
This balancing leads to edges penalty not being larger than a smooth
function, which is similar to TV, but to smooth regions being less
than the staircase effect which is absent in TV.

From the above explanations, we can conclude that the pro-
posed model provides a way  of balancing between the first and
second order derivatives of a function, so it can reduce the stair-
case effect while denoising, meanwhile, it has the property of edge
preservation which is very important in image processing.

2.2. The proposed algorithm

Recently, the split Bregman method introduced by Goldstein
and Osher [26] has become a very effective tool for solving various
problems including L1 norm. The method has been proven to be
equivalent to the augmented Lagrangian method [27,28] and also
belongs to the framework of the Douglas-Rachford splitting algo-
rithm [29]. With the advantages such as fast convergence speed,
numerical stabilities and smaller memory footprint, etc., see details
in Goldstein and Osher [26], the split Bregman method has been
used widely in image processing. In the following, we  shall use it
to solve Eq. (6).

Firstly, we introduce a variable z in Eq. (6), and let z = ω. Then
we can get

min
ω,v,z

˛1

∫
˝

∣∣∇z − v
∣∣dx + ˛2

∫
˝

∣∣∇v
∣∣dx

+
∫

˝

(f0 exp(−ω) + ω) dx, s.t. z = ω. (7)

Introducing the auxiliary variable b and using the split Bregman
method, we have the following subproblems to solve:

(zk+1, vk+1) = argmin
z,v

˛1

∫
˝

∣∣∇z − v
∣∣dx

+ ˛2

∫
˝

∣∣∇v
∣∣dx + ˇ

2

∥∥z − ωk − bk
∥∥2

2
, (8)

ωk+1 = argmin
ω

ˇ

2

∥∥ω + bk − zk+1
∥∥2

2
+
∫

˝

(f0 exp(−ω) + ω)  dx, (9)

bk+1 = bk − zk+1 + ωk+1. (10)



Download English Version:

https://daneshyari.com/en/article/447527

Download Persian Version:

https://daneshyari.com/article/447527

Daneshyari.com

https://daneshyari.com/en/article/447527
https://daneshyari.com/article/447527
https://daneshyari.com

