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This paper  studies  the  recovery  of  the  support  of  sparse  signal  that is  corrupted  by  both  dense  noise  and
gross  error.  The  gross  error is  an unknown  sparse  vector  whose  nonzero  entries  maybe  unbounded.  This
setup covers  a wide  range  of  applications,  such  as face  recognition,  inpainting  and  sensor  networks.  We
derive the  information-theoretic  lower  bounds  on the sampling  rate  required  to  obtain  a desired  error
rate,  which  depend  on  the  properties  of both  the signal  and  the  gross  error.  The  investigations  are given in
the  high-dimensional  setting.  Some  illustrations  are  provided  to further  reveal  the relationship  of  these
bounds.
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1. Introduction

Recent theory of compressed sensing (CS) states that a K-sparse
signal x ∈ R

N can be represented by its fewer measurements in
the form of y = Ax, where y ∈ R

M is the measurement vector, and
A ∈ R

M×N is the measurement matrix (K < M < N) [1]. It has been
one of the fastest growing research areas in signal processing, and
has been studied in many application fields, e.g., imaging, channel
estimation, radar, face recognition [2–6].

Define the support as the index set of the nonzero entries in x,
and one fundamental problem in CS is to recover the support of
x from y based on the prior information of signal sparsity. Many
papers, e.g., [7–14], have provided the theoretical analysis of sup-
port recovery when the measurements are corrupted by dense
noise such that y = Ax + w,  where w ∈ R

M is the noise vector. [7–10]
studied the sufficient and necessary conditions, [11,12] obtained
the bounds on the tradeoff between the sampling rate and the frac-
tion of detection errors, where the sampling rate stands for the ratio
M/N, and we derived in [13,14] the probability of exact support
recovery and partial support recovery, respectively.

In many practical applications, such as face recognition, inpaint-
ing and sensor networks, one needs to solve the problem of
recovering the signal support from y = Ax + e + w,  where the mea-
surements are also corrupted by a sparse error e [5,6]. e is usually
called the gross error and its entries can have arbitrarily large
magnitude. This problem and its variants have gained increasing
attentions recently in terms of theoretical analysis [15–26]. [15,16]

∗ Corresponding author. Tel.: +86 13810019644.
E-mail address: xuwb@bupt.edu.cn (W.  Xu).

investigated the sparse signal recovery from y = Ax + e, and provided
the recovery guarantees when x is recovered with high probability.
[17–19] derived the deterministic recovery guarantees based on
y = Ax + Be where x and e are both perfectly sparse. [20] provided
probabilistic recovery guarantees that improve upon the ones in
[17–19], where varying degrees of knowledge of the signal support
and sparse error support are available. Later in [21], Studer and
Baraniuk extended the results in [17–19] to the case of approx-
imately sparse signals and noisy measurements. To investigate
the recovery from y = Ax + Be, [22] derived a general achievability
bound for the compression rate in separating signals x and e. In
addition, [23,24] showed that the combination matrix [A, B] obeys
the restricted isometry property when A is a Gaussian distributed
matrix, where B is an identity matrix in [24]. Nguyen et al. studied
the problem of recovering sparse signal x from y = Ax + e + w [25,26].
[25] derived the recovery guarantees for random sub-sampled uni-
tary matrices, and [26] proposed an extended optimization method
and discussed its corresponding performance. In these existing
works, [17–21] considered deterministic matrices A, [15,16,23–26]
considered random matrices A, and [22] dealt with almost all matri-
ces A.

This paper considers the model y = Ax + e + w with random
matrix A. Though some papers have studied the related model
[20–22] or even the same model [25,26], they mainly focused on
the recovery guarantees or the performance of some reconstruc-
tion algorithms. By contrast, we discuss the relationship between
the sampling rate and the recovery error. Specifically, we  give the
information-theoretic lower bounds on the sampling rate � = M/N
(i.e., necessary conditions) required to obtain a desired recovery
error rate D. These bounds are given in terms of both the proper-
ties of the signal and the properties of the gross error. Our  results
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are derived in the high-dimensional setting where the length N
approaches to infinite, but with the sparsity rate and the signal-to-
noise ratio (SNR) being finite constants. Here, sparsity rate means
the fraction of nonzero entries in a sparse signal.

A summary of our contributions is as follows:

(i) Information-theoretic limits: we derive the lower bounds on
the sampling rate required for any possible recovery algo-
rithm when both dense noise and sparse gross error exist.
The bounds, which are formulated differently for Gaussian dis-
tributed gross error and arbitrarily distributed gross error, are
obtained by using the properties of mutual information, differ-
ent entropy and entropy power. The results generalize those
in [11], where the gross error is not considered.

(ii) Insights at high SNR: at high SNR, we show that the lower
bound of the required sampling rate is dominated by the sum of
sparsity rates of the signal and the gross error. In other words,
if we regard the combination signal xc = [x ; e] as the integrated
sparse signal, the support recovery requires the sampling rate
to grow at least linearly with the sparsity rate of xc.

(iii) Characterization of the impact of gross error: in addition to
showing the relationship between the required sampling rate
and the properties of the signal itself, we  reveal the depen-
dence of the lower bounds on sparsity rate of gross error and
the entropy power of its nonzero entries. Using some illus-
trations, we further demonstrate the impact of gross error in
recovering the signal support.

The rest of the paper is organized as follows. Section 2 states the
signal model and distortion measure. Section 3 develops the main
results of this paper, and discusses the connections to previous
work. Some illustrations for the derived bounds are provided in Sec-
tion 4. Section 5 concludes this paper. Finally, some mathematical
proofs are provided in Appendices.

Notations: A random variable and a random vector are denoted
as X and X in the uppercase letters, and their realizations are
denoted as x and x in the lowercase letters, respectively. For a ran-
dom matrix A, its realization is denoted A. For a set L ⊆ {1, 2, . . .,  N},
the cardinality is denoted by

∣∣L∣∣, and Lc means its complement. For

a vector x, xi is the ith entry, and xS stands for the
∣∣S∣∣-dimensional

vector whose entries are selected from the index set S of x. For a
given M × N matrix A, its transpose is denoted by AT, its Moore-
Penrose inverse is A†, and its determinant is denoted by

∣∣A∣∣. The

matrix AL ∈ R|L|×N is obtained from A by retaining the rows of A
with indices in L, the matrix A∗,S ∈ R

M×|S| is obtained by retaining
the columns of A with indices in S, and the matrix AL,S ∈ R|L|×|S| is
obtained by retaining the rows and columns of A with indices in
L and S, respectively. We  use In×n to refer to the identity matrix,
and 0M×1 is the M × 1 vector with all entries being zero. The natural
logarithm is referred to as log.

2. Problem statement

2.1. Signal model

Consider a K-sparse signal X ∈ R
N , and its noisy measurements

in the form of

Y = AX + E + 1√
snr

W (1)

where A ∈ R
M×N is the random measurement matrix, E ∈ R

M is the
�-sparse error, W∼N(0,  IM×M) is the additive white Gaussian noise,
and snr ∈ (0, ∞).  Assume the vector X, the matrix A, the error E, and
the noise W are mutually independent. The supports of X and E are

denoted as S and L, respectively, where the support is the index set
of nonzero entries such that

S = {i ∈ {1, 2, . . ., N} : Xi /= 0} (2)

and

L = {i ∈ {1, 2, . . .,  N} : Ei /= 0} (3)

Note that K = |S| and � = |L|.
The problem investigated in this paper is the recovery of the

support S in the high-dimensional setting (i.e., N→ ∞)  when the
decoder is given the vector Y and the matrix A. To characterize the
corresponding behavior, we  give some assumptions.

Assumption 1. (Assumptions on signal X):

(i) The nonzero positions of S are distributed uniformly within
{1, 2, . . .,  N} with a known size K, where lim

N→∞
K
N = � for some

sparsity rate � ∈ (0, 1/2).
(ii) The probability distribution of a variable X is given by

pX = (1 − �)ı0 + �pU (4)

where ı0 is a point-mass at x = 0, and pU is the distribution of
the nonzero entries in X.

Assumption 2. (Assumptions on measurement matrix A):

(i) The distribution on A is independent of X, W and E.
(ii) The number of rows M obeys lim

N→∞
M
N = � for some sampling

rate � ∈ (0, 1].1

(iii) Assume E[
∥∥A
∥∥2

F
] = M where ‖ · ‖F is the Frobenius norm. That

is, each row has unit magnitude on average.

Assumption 3. (Assumptions of i.i.d. entries in matrix A): The
entries of A are i.i.d. with mean zero and variance 1/N.

Assumption 4. (Assumptions on sparse error E):

(i) The size of support L obeys lim
N→∞

�
N = ς for some sparsity rate

ς ∈ (0, 1/2).
(ii) The probability distributions of a variable E and a variable EL

are denoted as pE and pEL
, respectively. Their definitions are

similarly to pX in Assumption 1.

Based on Assumption 4, if we define lim
N→∞

�
M = ς̄, then ς̄ = ς/�.

Define the variances of the distributions pX, pE and pEL
as VX, VE and

V̄E , respectively.

2.2. Distortion measure

The quanlity of support recovery is usually measured by two
quantities, i.e., missed detection rate (MDR) and false alarm rate
(FAR). Define Ŝ as the recovered support. MDR  is given by

MDR(S, Ŝ) = 1
|S|

N∑
i=1

1(i ∈ S, i /∈ Ŝ) (5)

1 In [11], � ∈ (0, ∞), whereas we only consider the case of � ≤ 1 that corresponds
to  the compressed sensing setting.
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