
Computer Communications 84 (2016) 40–51 

Contents lists available at ScienceDirect 

Computer Communications 

journal homepage: www.elsevier.com/locate/comcom 

Towards automatic protocol field inference 

Ignacio Bermudez 

a , ∗, Alok Tongaonkar a , Marios Iliofotou 

b , Marco Mellia 

c , 
Maurizio M. Munafò c 

a Symantec Corporation, 350 Ellis St., Mountain View, CA 94086, USA 
b Caspida, 2100 Geng Road#100, Palo Alto, CA 94303, USA 
c Politecnico di Torino, Corso Duca degli Abbruzzi 24, Turin 10129, Italy 

a r t i c l e i n f o 

Article history: 

Received 21 September 2015 

Revised 20 February 2016 

Accepted 23 February 2016 

Available online 3 March 2016 

Keywords: 

Protocol reverse-engineering 

ICS/SCADA Networks 

Payload based anomaly detection 

a b s t r a c t 

Security tools have evolved dramatically in the recent years to combat the increasingly complex nature of 

attacks. However, these tools need to be configured by experts that understand network protocols thor- 

oughly to be effective. In this paper, we present a system called FieldHunter , which automatically extracts 

fields and infers their types. This information is invaluable for security experts to keep pace with the 

increasing rate of development of new network applications and their underlying protocols. FieldHunter 

relies on collecting application messages from multiple sessions. Then, it performs field extraction and 

inference of their types by taking into consideration statistical correlations between different messages 

or other associations with meta-data such as message length, client or server IP addresses. We evaluated 

FieldHunter on real network traffic collected in ISP networks from three different continents. FieldHunter 

was able to extract security relevant fields and infer their types for well documented network proto- 

cols (such as DNS and MSNP) as well as protocols for which the specifications are not publicly available 

(such as SopCast). Further, we developed a payload-based anomaly detection system for industrial con- 

trol systems using FieldHunter. The proposed system is able to identify industrial devices behaving oddly, 

without any previous knowledge of the protocols being used. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In recent years attacks against networks have become more 

complicated. To defend against these complex attacks, network se- 

curity systems have also evolved to use more sophisticated mech- 

anisms. For instance, firewalls have moved from using simple 

packet-filtering rules to using application level rules that need 

deeper understanding of the protocols being used by network ap- 

plications. Similarly, intrusion detection systems are increasingly 

using vulnerability based signatures [1] that contain information 

specific to network protocols. Access control mechanisms are also 

evolving from IP address based policies to fine-grained policies 

which use protocol objects such as users and message types. 

It is clear that configuring all of the above applications requires 

a deeper understanding of the network protocols, which is done 

through reading protocol specifications. However, comprehending 

protocol specifications is a very tedious task. Moreover, many of 

∗ Corresponding author. Tel.: +1 4084665710. 

E-mail addresses: ignacio_bermudezcorr@symantec.com (I. Bermudez), 

alok_tongaonkar@symantec.com (A. Tongaonkar), marios@caspida.com 

(M. Iliofotou), marco.mellia@polito.it (M. Mellia), maurizio.munafo@polito.it 

(M.M. Munafò). 

the proprietary protocols specifications are not publicly available. 

The traditional approach of manual reverse engineering a proto- 

col cannot cope with the rate at which new benign or malicious 

applications are made available and brought into workplace. As a 

result, security administrators have to configure security applica- 

tions with very limited visibility into the network protocol space; 

thus adversely affecting the efficacy of these tools in securing the 

network. 

The above technology challenge has led to a growing interest 

in the research community in the development of techniques for 

automating the reverse-engineering process for extracting proto- 

col specifications, which consists of inferring message formats and 

underlying protocol state machines. The state-of-the-art techniques 

can be classified in two categories: reverse-engineering through bi- 

nary code analysis [2–6] and from network traffic [7–13] . In this 

work, we present an automatic reverse-engineering system of the 

second category, i.e. it infers protocol specifications from just net- 

work traffic data. Reverse-engineering using network traffic has an 

advantage over techniques using binary analysis, because applica- 

tion binaries are not always available to the security operators. 

Our approach to the problem of protocol reverse engineering 

aims to extract field boundaries and field protocol types from net- 

work traces that belong to the protocol. As compared to previous 

http://dx.doi.org/10.1016/j.comcom.2016.02.015 

0140-3664/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.comcom.2016.02.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2016.02.015&domain=pdf
mailto:ignacio_bermudezcorr@symantec.com
mailto:alok_tongaonkar@symantec.com
mailto:marios@caspida.com
mailto:marco.mellia@polito.it
mailto:maurizio.munafo@polito.it
http://dx.doi.org/10.1016/j.comcom.2016.02.015


I. Bermudez et al. / Computer Communications 84 (2016) 40–51 41 

works in this area, we are able to extract richer protocol informa- 

tion in terms of (i) extracting diverse field types, and (ii) handling 

binary and textual protocols in an uniform framework. We study 

well known protocols and identify a set of field types that can be 

used in a multitude of security applications. We focus on identify- 

ing: (i) Message Type (MSG-Type), such as flags in DNS protocol or 

GET/POST keywords in HTTP, (ii) Message Length (MSG-Len), usu- 

ally found in TCP protocols to delimit application messages in a 

stream, (iii) Host Identifier (Host-ID) such as Client ID and Server 

ID, (iv) Session Identifier (Session-ID) such as cookies, (v) Transac- 

tion Identifier (Trans-ID) such as sequence/acknowledgment num- 

bers, and (vi) Accumulators such as generic counters and times- 

tamps. We note that a protocol may not have all the above types 

of fields. 

We built a system called FieldHunter, that uses a two step 

methodology: (i) Field extraction: here we extract fields from the 

protocol messages. (ii) Field type inference: here we infer the type 

of the fields extracted in the previous step. The key contribution 

of our work is the development of various heuristics based on ob- 

served statistical properties for inferring the different field types. 

In our evaluation, we used real network traces from three different 

Internet Service Providers (ISPs) to validate the ability to extract 

various field types from well known protocols such as Real Time 

Protocol (RTP), as well as protocols without any publicly available 

specification such as SopCast’s protocol. 

Next, to illustrate the use of FieldHunter in building end-to- 

end security applications, we developed a payload-based anomaly 

intrusion detection system for industrial control systems. Indus- 

trial Control Systems (ICS) encompass several types of control sys- 

tems used in industrial production, including Supervisory Control 

and Data Acquisition (SCADA) systems, Distributed Control Sys- 

tems (DCS), and other smaller control system configurations such 

as Programmable Logic Controllers (PLC). Due to their use in the 

industrial sectors and critical infrastructures, they are a prime tar- 

get for attackers and the cost of successful attacks is tremendous 

to the victims. Typically, the attackers targeting ICS are sophisti- 

cated, and have a lot of resources; sometimes even being state 

sponsored. They are able to avoid detection by traditional defense 

mechanisms [14] . To make matters worse, there has been a trend 

of increasing number of attacks on critical infrastructure as evi- 

denced by the rapid increase in the number of reported attacks on 

ICS from 91k in 2012 to over 675k in 2014 [15] . To the best of our 

knowledge, our system is the first payload-based anomaly detec- 

tion system that handles legacy proprietary protocols commonly 

used in ICS networks. 

The rest of the paper is organized as follows. Section 2 defines 

the terminology used throughout the paper, Section 3 provides de- 

tails about the core algorithms used by FieldHunter. Performance 

evaluation and parameter tuning are presented in Section 4 . We 

describe the anomaly detection system for ICS in Section 5 . We dis- 

cuss about assumptions and limitations in Section 6 , related works 

in Section 7 and finally conclude this work in Section 8 . 

2. Terminology 

Fig. 1 shows a pictorial representation of the terminology used 

throughout this work. Our system uses as input a set of conversa- 

tions 1 of a particular application. We refer to such a set as col- 

lection . Conversations consist of exchanged messages between two 

hosts. Messages from client to server are denoted as C2S (dark- 

colored) and from server to client as S2C (light-colored). We con- 

sider the initiator of the conversation as the client, the other end 

1 A conversation is formed of the two flows in opposite directions, where a flow 

is defined by the 5-tuple (Layer-4 Protocol, Source IP, Source Port, Destination IP, 

Destination IP). 

Fig. 1. Terminology diagram. 

as the server, and identify hosts by their IP address. Messages con- 

sist of different pieces of information enclosed in fields . As we 

show in Fig. 1 , conversations evolve horizontally over time (t) and 

messages can be compared vertically across multiple conversa- 

tions. 

To enable the analysis of a collection, the messages in the 

conversations can be grouped together in the following ways: (i) 

Grouping messages based on their position in conversations, e.g., 

all third messages in C2S direction. (ii) Grouping together all the 

messages of a conversation. This essentially captures session-like 

information. (iii) Grouping together messages by direction, e.g., all 

C2S messages. We note that (i) and (ii) are very similar to vertical 

and horizontal sub-collections as defined by Kreibich et al. [16] . 

Message grouping is instrumental for FieldHunter to find patterns 

in the collections. If these groups do not contain enough message 

diversity, FieldHunter cannot unveil the field types it is designed 

for. 

It is worth mentioning that the formation of protocol collec- 

tions used by FieldHunter is beyond the scope of this work. How- 

ever, we suggest two alternatives for the same. One way is to use 

a test-bed in which the application is executed while the traffic 

exchanged is being captured. Alternatively, the collection can be 

extracted from passive observation of actual traffic by the means 

of network classifiers, i.e., by filtering all conversations involving 

a well-known port (see Section 5 ), or by relying on a behavioral 

traffic classifier classifier [17] . 

Application conversations are transported by TCP/UDP segments 

and are extracted by FieldHunter using the following methodology: 

(i) for messages transported over UDP it is assumed that each seg- 

ment contains one application message, and (ii) for TCP it is as- 

sumed that TCP PUSH flags delimits the beginning of a new appli- 

cation message from the end of another one. An accurate message 

extraction can be done once the MSG-Len field has been identified 

by FieldHunter. 

We make a distinction between textual and binary protocols as 

follows: Textual protocols use human readable words and symbols 

to structure data, and they look more like a text document. Expo- 

nents of textual protocols are HTTP and SMTP. On the other hand, 

binary protocols encode data on bits rather than symbols and the 

way that data is structured is quite rigid. Examples of binary pro- 

tocols are DNS and DNP. 

3. Design 

In this section, we describe the system design and discuss the 

two components of FieldHunter(i) Field Extractor (ii) Field Type In- 

ference Engine. These components are run in sequence to obtain 



Download	English	Version:

https://daneshyari.com/en/article/447555

Download	Persian	Version:

https://daneshyari.com/article/447555

Daneshyari.com

https://daneshyari.com/en/article/447555
https://daneshyari.com/article/447555
https://daneshyari.com/

