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a  b  s  t  r  a  c  t

Based  on  power  spectral  density  (PSD)  analytical  technique,  mean  square  error (MSE)  (or  variance)  of  the
frequency  estimate  of  a first-order  complex  adaptive  IIR  notch  filter  (ANF)  using  modified  complex  plain
gradient  (MCPG)  algorithm  is  investigated  in  this  paper.  The  steady-state  expression  for  MSE  is derived  in
closed form.  A quantitative  analysis  for the  estimation  MSE  has  been  carried  out.  It has  been  revealed  that
the  MSE  of frequency  estimate  is independent  of an  input  frequency  of a  complex  sinusoid.  In addition,
computer  simulations  are treated  to corroborate  the  theoretical  analysis  and  the  relationships  between
MSE  and  system  parameters  are  shown.
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1. Introduction

Frequency estimation based on adaptive methods play a major
role in many areas of digital signal processing applications [1,2]
such as Doppler estimation of radar and sonar wave returns, carrier
and clock synchronization, angle of arrival estimation, frequency-
shift keying (FSK) signal demodulation and so on. There are plenty
of methods that can be used to estimate the frequency of a com-
plex sinusoid [3]. Complex ANF methods are widely used due to
low complexity [4–12]. One example is to reject interference in the
quadrature phase-shift keying (QPSK) spread spectrum by complex
ANF [4,5]. The ANF that we have considered in this paper is the
first-order complex ANF with constrained poles and zeros, which
was first proposed by Pei [5]. This structure is widely used due
to simplicity and economy. We  can find its benefits in open litera-
tures [6–9]. In addition, Regalia [11] has proposed the complex ANF
which has the same system function as that of [5] but it is realized
by using state-space approach instead of direct form realization.

Meanwhile, various adaptive algorithms have been developed
for the constrained first-order complex ANF [5–12], such as the
modified complex Gauss-Newton (MGN) algorithm [5], the com-
plex plain gradient (CPG) algorithm [6–9], the normalized CPG
(NCPG) algorithm [10], Regalia algorithm (RA) [11], and the recent
adopted modified CPG (MCPG) algorithm [12]. The studies of those
algorithms have revealed that the MGN  is very complicated and
it provides bias in the frequency estimate. Moreover, the stability
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check must be performed at all times. Next, the CPG has a main
drawback which is that it has very slow adaptation speed when
the optimum solution is at some distance from the initial value.
This is because the slope of the cost function is nearly constant in
regions away from the optimum. However, this algorithm provides
unbiased frequency estimation. For the RA, although it provides
fast adaptation speed as compared with the CPG, high fluctuation
in the frequency estimate is also obtained. Moreover, it is difficult
to select the appropriated pole radius � that can attain the highest
performance of the algorithm. Finally, the MCPG provides not only
fast adaptation, but also low computational complexity as com-
pared with the comparative algorithms. Therefore, the MCPG can
be considered as a candidate among other algorithms for real-time
applications including complex sinusoidal frequency estimation
and tracking in radar and sonar systems [5] and rejection of narrow-
band interference in QPSK spread spectrum [5] and QPSK systems
[13]. In [12], however, only the derivation of the MCPG and mean
value of the frequency estimate are mentioned but the steady-state
MSE  of the frequency estimate has not been considered yet. In [15],
we have proposed the MSE  analysis of the unbiased modified plain
gradient (UMPG) algorithm for a real second-order ANF where the
accurate analytical results were obtained. Unfortunately, we have
found that it is difficult to apply the technique adopted in [15] to the
case of complex ANF using the MCPG because of complex nature of
the ANF and algorithm. Instead, we have found that the theoretical
framework adopted in [10] is more simple and suitable to analyze
the MCPG.

In this paper, performance assessment of the MCPG is extended
to the MSE  analysis. We  apply the theoretical framework in [10]
to the case of a complex ANF using the MCPG. The closed form
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expression for steady-state MSE  of the frequency estimate is
derived. Finally, computer simulations are conducted to corrob-
orate the theoretical analysis and to demonstrate its comparative
performances with some previous algorithms including the CPG
and RA.

2. Complex ANF and MCPG

Let us define a noisy complex sinusoid x(k) of amplitude A, fre-
quency ω0, and phase �, of the form

x(k) = Aej(ω0k+�) + n(k), k = 0, 1, 2, . . . (1)

herein, A > 0 and ω0 ∈ (0, �) are considered as deterministic but
unknown constants. � ∈ [0, 2�) is a uniform random variable.
n(k) = nR(k) + jnI(k) is assumed to be a zero-mean complex white
process, where nR(k) and nI(k) are zero-mean real white processes
with identical but unknown variances of �2

n /2 and uncorrelated
with each other. The signal to noise ratio (SNR) can be calculated
by

SNR = A2

�2
n

. (2)

The MCPG [12] that is used to estimate an input frequency ω0 of
x(k) is defined by

˝0(k + 1) = ˝0(k) + �Re{e(k)g∗(k)}, (3)

where ˝0(k) is the estimate of ω0 at time instant k and � is the
stepsize parameter that is a positive real constant controlling the
speed of convergence of the algorithm. Re{·} is the real part, e(k)
is known as the error or output signal of a complex ANF and is
generated by the system function [12] of the form

He(z) � N(z)
D(z)

= 1 − ej˝0 z−1

1 − �ej˝0 z−1
, (4)

where � is the pole constraction factor determining the notch band-
width, N(z) and 1/D(z) are, respectively, all zeros and all poles
systems and ˝0 is the frequency parameter of the filter which is
adjusted by (3). As discussed in [12], the MCPG is the simplified ver-
sion of the CPG [6]. It provides better convergence property than
that of the CPG. In addition, it has computational efficiency, is sim-
ple to implement and is appropriate for real-time applications. g(k)
is known as the gradient signal [12] and is given by

g(k) = jej˝0 x(k − 1).  (5)

It is easy to see that g(k) is generated by the gradient filter of the
form

Hg(z) = jej˝0 z−1. (6)

In the next section, the steady-state analysis of the MCPG is
addressed and derived in terms of the closed form expression for
steady-state MSE  of the frequency estimate ˝0(k).

3. Steady-state analysis

In this section, performance analysis of the MCPG is addressed.
Since we know that when the adaptive algorithm reaches its
steady-state, the notch frequency ˝0(k) coincides the frequency
ω0 of input sinusoid. However, due to input noise n(k), the steady-
state frequency variable will fluctuate around its true value, leading
to mean square error of the estimated frequency. The MSE  of the
estimated parameter of any adaptive filter is an important quan-
tity because it can be used to measure an accuracy of the estimated
parameter. Thus prior to analyze the MSE  of the frequency estimate,

we first refer to the ensemble averaged value of the learning incre-
ment of (3), assuming that ˝0(k) very slowly changes over time
(see [12], (23)):

E[Re{e(k)g∗(k)}] = Re{E[e(k)g∗(k)]}

= A2(2�  cos(˝0 − ω0) − � − 1) sin(˝0 − ω0)
1 + �2 − 2� cos(˝0 − ω0)

.  (7)

Substituting (7) into (3) yields the difference equation for the con-
vergence in the mean of the frequency estimate ˝0(k):

˝0(k + 1)

= ˝0(k) + �
A2(2�  cos(˝0(k) − ω0) − � − 1) sin(˝0(k) − ω0)

1 + �2 − 2� cos(˝0(k) − ω0)
,

(8)

where ˝0(k) in (3) is replaced by ˝0(k) � E[˝0(k)] for notation sim-
plicity. From (7), it is obvious that ˝0 = ω0 is a stationary point. At
steady-state where ˝0 � ω0, cos(w)|w→0 � 1 and sin(w)|w→0 � w,
(7) becomes

E[Re{e(k)g∗(k)}] ≈ −˛A2(˝0 − ω0), (9)

where  ̨ = 1/(1 − �). Using (9) in (8), we  obtain

˝0(k + 1) = ˝0(k) − �˛A2(˝0(k) − ω0). (10)

Eq. (10) is the first-order time-invariant difference equation in
˝0(k) whose solution is given by (see Appendix A)

˝0(k) = (˝0(−1) − ω0)(1 − �˛A2)
k+1 + ω0, (11)

where ˝0(−1) is an initial value of ˝0(k) at time instant k = −1.
It is seen that the term (1 − �˛A2) appeared on the right-hand
side (RHS) of (11) tends to zero when k→ ∞ and (11) can then be
rewritten as follows:

˝0(k)|k→∞ = ω0. (12)

Therefore it has been proved from (12) that the MCPG is unbiased.
Referring to (11), we can predict the iteration number Ni that is
necessary to shift ˝0(k) from ˝0(−1) to ω0 as follows. It is well-
known that the term (1 − �˛A2) exponentially decreases in time
provided that � is sufficient small. Thus we  can write that

1 − �˛A2 = e−(1/�), (13)

where � is defined as the time constant and is derived from (13) as

� = − 1
loge(1 − �˛A2)

. (14)

As a result, the approximated convergence time Ni of the MCPG
therefore is

Ni ≈ 5� (samples).  (15)

In addition, the stability bound of the stepsize in the sense of mean
is easily derived from (11) as

0 < � <
2

˛A2
. (16)

The upper bound of stepsize in (16) guarantees monotonic conver-
gence in the sense of mean [12].

Now, the steady-state MSE  analysis of the frequency estimate
˝0(k) based on the PSD technique [10] is introduced. Firstly, sub-
stituting z = ejω0 , ω0 ∈ [0, �] in (4) and (6) yields
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