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The hydrolyzed protein derived from seafood waste is regarded as a premium and low-cost nitrogen source for
microbial growth. In this study, optimization of enzymatic shrimp waste hydrolyzing process was investigated.
The degree of hydrolysis (DH) with four processing variables including enzyme/substrate ratio (E/S), hydrolysis
time, initial pH value and temperature, were monitored. The DH values were used for response surface method-
ology (RSM) optimization through central composite design (CCD) and for training artificial neural network
(ANN) to make a process prediction. Results indicated that the optimum levels of variables are: E/S ratio at
1.64%, hydrolysis time at 3.59 h, initial pH at 9 and temperature at 52.57 °C. Hydrocarbon-degrading bacteria Ba-
cillus subtilisN3-1Pwas cultivated using different DHs of hydrolysate. The associated growth curves were gener-
ated. The research output facilitated effective shrimp waste utilization.
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1. Introduction

Waste generated from seafood processing plants has been a major
concern in coastal Newfoundland (Adams et al., 2005) and shrimp
waste represents 37% of the total seafood processing waste in the prov-
ince. Therewere 110,000 tons of shrimp landed inNewfoundland annu-
ally, from which over 40% (w/w) is discarded as solid shrimp waste
(Gildberg and Stenberg, 2001). Although some of such waste can be
transformed into value added products, there is still large amount
being discarded as processing effluents (Jamieson et al., 2013). To
date, hydrolysis has been regarded as a promising option to utilize sea-
food processingwaste. The hydrolysate can be used as low-cost sustain-
able nutrient sources for microbial growth due to their high protein
contents (Dufossé et al., 2001; Klompong et al., 2012; Martone et al.,
2005; Safari et al., 2012). Shrimpwaste generally contains 8–10% chitin,
30–40%protein and 10–20% calcium in dryweights (Gallert andWinter,
2002). The high protein content, inexpensive source and relative abun-
dance make shrimp waste a promising bacterial growth substrate.
Shrimp waste has been studied with various hydrolysis methods
(Cahú et al., 2012; Gildberg and Stenberg, 2001; Quitain et al., 2001;
Ruttanapornvareesakul et al., 2006). As the autolysis hydrolysis and
acid hydrolysis are complex and inefficient processes, and need higher
demand on reaction conditions to be effective, the enzymatic hydrolysis
has been recognized as a more applicable method (Kristinsson and

Rasco, 2000; Samaranayaka and Li-Chan, 2008). Alcalase, a commercial
bacterial protease with high efficiency, have been widely employed to
enzymolysis shrimp waste (Abdul-Hamid et al., 2002; Dey and Dora,
2014; Synowiecki and Al-Khateeb, 2000). During the protein hydrolysis
process, large numbers of peptide bonds are cleaved in parallel and se-
ries. This produces complicatedmatrix of substrate and triggers newhy-
drolysis progress (Marquez and Vázquez, 1999). In addition, thermal
inactivation of enzymes at the end of hydrolysis is another sophisticated
process and not well understood. To help study factor (e.g., tempera-
ture, pH, and time) effects, understand the mechanisms of hydrolysis,
predict the performance, and promote its applicability, experimental
and modeling methods have been recognized as effective solutions
(Morgenroth et al., 2002).

One-factor-at-a-time (OFAT) experimental method studies a pro-
cess by changing one independent factor at a time and keeping all the
others as constants. It can be used for selecting key parameters with
their ranges of interest and operability (Bari et al., 2009). To study inter-
action effects among different factors and find the true optimum, re-
sponse surface methodology (RSM) has been widely used
(Montgomery, 2008). RSM is an effective experiment-based tool to op-
timize a process whenmultiple factors and their interactionsmay affect
the response (Rodrigues et al., 2006;Wangtueai and Noomhorm, 2009;
Zheng et al., 2008;). This statistics-based technique is suitable for pro-
cess optimization with fitting for a quadratic surface (Myers et al.,
2009). Bari et al. (2009) employed the OFAT method and central com-
posite design (CCD) of RSM to optimize media for the improvement of
production of citric acid from oil palm empty fruit bunches. See et al.
(2011) used three factors, five levels CCD design of RSM to optimize
Salmon skin protein hydrolysis to obtain the maximum degree of
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hydrolysis using Alcalase. OFAT and RSM are usually used for evaluating
the effect of the independent variables, alone or interaction and select
optimum conditions of variables in the process. However, it is hard to
say that they can be applied to all optimization and modeling studies
(Bas and Boyaci, 2007). As mainly used for linear and quadratic approx-
imations, they are not suitable in highly nonlinear cases (Desai et al.,
2008). It is also difficult to conduct sensitivity analysis of input parame-
ters due to the presence of cross interactions (Lou and Nakai, 2001). To
obtain a more-predictive model with less requirements on data, RSM
needs to be integrated with other modeling tools for system prediction.

In the past thirty years, artificial neural network (ANN) has become
as an attractive tool for non-linear multivariate modeling and predic-
tions based on experiment datasets (Desai et al., 2005). It is a data pro-
cessing system that imitates the human brain's way of working
(Buciński et al., 2008). It combines artificial neurons that receive inputs
into layers. When the input is received, the output would be calculated
from the weighted input signal (Kuvendziev et al., 2014). Without
knowing the detailed relationship of processing variables in advance,
ANN can recognize and replicate cause-effect relationships with its ca-
pability of adaptive training and data self-organization. This makes
ANN an efficient tool to study complex systems (Khajeh and
Barkhordar, 2013). It has been widely used in many fields of science
and engineering (Gardner and Dorling, 1998; Fukuda and Shibata,
1992; Kasiri et al., 2008; Yi et al., 2007). It has several advantages over
the conventional mathematical modeling methods and has been suc-
cessfully applied to model protein hydrolysis processes (Abakarov et
al., 2011; Bucinski et al., 2004; Buciński et al., 2008; Li et al., 2006). To
have better predictability of the process behavior through optimization,
the integration of ANN and RSM has been an effective way. Shao et al.
(2007) built a predictive model for the recovery of Tocopherol from
rapeseed oil deodorizer distillate combining ANN with RSM. Kasiri et
al. (2008) optimized heterogeneous photo-Fenton process for degrada-
tion of C.I. Acid Red 14 azo dye integrating ANN and RSM. However, to
date, no integration of RSM and ANN has been applied in optimization
of shrimp waste utilization.

In this study, to fill the above knowledge gap, the hydrolysis of
northern pink shrimp (Pandalus borealis) waste generated in New-
foundland was used as an illustrative example. Factors including en-
zyme/substrate ratio (E/S), hydrolysis time, initial pH value and
hydrolysis temperature were studied as system inputs. The degree of
hydrolysis (DH) of shrimp waste was used as the output. Both RSM
andANNwere integrated for systemoptimization through investigating
the effect of inputs and their relationships with the output. A four-fac-
tor, five-level CCD design of response surface methodology was
employed in RSM. The experimentally-determined DH for different
levels of factors were then used for training the ANN to simulate the
process. The ANOVA and RSM were applied to test the null hypothesis
that the significances of each factor and their interactions on the DH
are equal against the alternative that they are not equal. The contribu-
tions of each input factor to the output were also evaluated by ANN.
The optimum conditions for shrimp waste hydrolysis were also deter-
mined. Products with three different DHswere finally used as the nitro-
gen source to cultivate Bacillus subtilis N3-1P, a hydrocarbon-degrading
bacterium to validate the growth efficiency related to DH.

2. Materials and methods

2.1. Shrimp waste hydrolysis

2.1.1. Materials and reagents
Shrimp waste including heads, shells and tails of northern pink

shrimp was purchased from a local fish market in Newfoundland, Can-
ada. The shrimpwastewas grounded in a food processor (Black & Deck-
erModel FP2700SC) and packed in plastic bags. The groundedmaterials
were kept frozen at −18 °C. The enzyme used for the hydrolysis of
shrimp waste is Alcalase 2.4L (Sigma Aldrich, U.S. ≥2.4 U/g). It is a

commercial proteinase from Bacillus licheniformis, subtilisin A, inex-
pensive and nonspecific with endopeptidase activity. Chemicals used
for medium content were analytical reagent purchased from Sigma Al-
drich, Canada.

2.1.2. Shrimp waste hydrolysis
The hydrolysis procedure using shrimp waste was modified from

Dey and Dora (2014). The grounded shrimp waste had been thawed
for 1 h at room temperature and suspended (1:1, w/v) in distilled
water in a baffled colonial flask. The mixture was then heated in a
water bath at 90 °C for 20 min to inactive the indigenous hydrolyzing
enzyme. Different E/S ratio of enzymewas added into each correspond-
ing flask when the mixture was cooled to room temperature (20 °C).
The 1N HCl or 1N NaOH solution was employed to adjust the initial
pH value. The flasks were then put into a temperature controlled
water bath with a shaking rate at 110 rpm. The enzymewas inactivated
by heating at 90 °C for 10 min. The samples were cooled to room tem-
perature again and subsequently centrifuged at 10,000 rpm for
15 min. The supernatant was collected and then freeze dried to obtain
dry powder. The dry powder was kept frozen in plastic bottles in a
−80 °C freezer.

2.1.3. Determination of DH
DH was determined according to the method of Hoyle and Merritt

(1994). The 20% trichloroacetic acid (TCA) was added to the superna-
tant (1:1, v/v) to create 10% TCA-soluble and TCA-insoluble fractions.
The mixture was then centrifuged at 6000 rpm at room temperature
for 20min to collect the 10% TCA-soluble supernatant. TheDHwas com-
puted as the ratio, percent of 10% TCA-soluble nitrogen to total nitrogen
of the sample. All the nitrogen content was determined using the
Kjeldahlmethod (AOAC, 2005). Each testingwas performed in triplicate
and the result was expressed as the mean of triplicate trials ± standard
deviation.

DH ¼ 10%TCA−soluble N in sample
Total N in sample

� 100% ð1Þ

2.2. RSM and ANN Design

2.2.1. RSM design
RSM was used to optimize enzymatic hydrolysis of shrimp waste.

According to literature (See et al., 2011; Dey and Dora, 2014), four
main factors including E/S ratio, hydrolysis time, initial pH value and hy-
drolysis temperature were selected for CCD. OFAT experiments was
conducted first to choose the most critical factors and their reasonable
ranges (fixed level of four factors were E/S ratio = 0.5%, time = 1 h,
pH = 8 and temperature = 40 °C). The main effects of critical factors
on the degree of hydrolysis are shown in Fig. 1.

As shown in Fig. 1, the central points of E/S ratio, hydrolysis time, ini-
tial pH and hydrolysis temperature were set as 1.25%, 2.5 h, 8 and 50 °C,
respectively. Therefore, a four-factor, five-level CCDwas developed. The
four independent variables and their experimental ranges are shown in
Table 1. The variables Xi were coded as xi according to the following re-
lationship:

xi ¼
Xi−X0

δX
ð2Þ

Where, X0 is the value of Xi at the center point and δX stands for the
step change.

The CCD was comprised of 29 treatments including 24 factorial
points, eight axial points (α = 1.41) and five replicates at the center
points. DH is used as the response for the combination of the indepen-
dent variables as shown in Table 2. Randomized experimental runs
were adopted to minimize the effects of unexpected variability in the
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