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a  b  s  t  r  a  c  t

This  paper  presents  an optimum  step-size  assignment  for incremental  least-mean  square  adaptive
networks  in  order  to improve  its robustness  against  the  spatial  variation  of observation  noise  statistics
over  the  network.  We  show  that when  the  quality  of  measurement  information  (in  terms  of  observation
noise  variances)  is  available,  we  can  exploit  it to  adjust  the  step-size  parameter  in  an  adaptive  network  to
obtain better  performance.  We  formulate  the  optimum  step-size  assignment  as  a constrained  optimiza-
tion  problem  and  then  solve  it via  the  Lagrange  multipliers  approach.  The  derived  optimum  step-size  for
each  node  requires  information  from  other  nodes,  thus  with  some  justifiable  assumptions,  near-optimum
solutions  are derived  that  depend  only  on  local  information.  We  show  that  the  incremental  LMS  adaptive
network  with  near-optimal  step  sizes  has  improved  robustness  and  steady-state  performance.  Simulation
results are also  presented  to support  the  theoretical  results.

© 2012 Elsevier GmbH. All rights reserved.

1. Introduction

In many WSN  applications, the ultimate goal is to obtain an accu-
rate estimate of an unknown parameter, based on the temporal
data acquired by spatially distributed sensors [1,2]. This estimation
problem can be solved by either a centralized approach (with fusion
center) or a decentralized approach (see e.g. [3] and references
therein for a brief review of distributed estimation algorithms). In
many applications, however, sensors need to perform estimation
in a constantly changing environment without having available
a (statistical) model for the underlying processes of interest [4].
This issue motivated the development of distributed adaptive esti-
mation algorithms (or adaptive networks). An adaptive network
is a collection of adaptive nodes that observe space–time data
and collaborate, according to some cooperation protocol, in order
to estimate a parameter [5–14]. Using cooperative processing in
conjunction with adaptive filtering per node enables the entire net-
work (and also each individual node) to track not only the variations
of the environment but potentially also the topology of the network.

Depending on the manner by which the nodes communicate
with each other, adaptive networks may  be referred to as incre-
mental networks (algorithms) or diffusion networks (algorithms).
In the incremental mode, a cyclic (Hamilton) path through the
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network is required, and nodes only communicate with neighbors
within this path [5–10]. In diffusion based adaptive networks, each
node combines estimates form its neighbors using some combiner
methodology and then performs adaptation on this combined
estimate. Finally, the new (updated) estimate is then diffused into
the network [11–14].

The performance of existing incremental adaptive networks
[5–10] deteriorates when the measurement quality at some
nodes are lower than others; because the poor estimates of
such nodes pervades into the entire network due to incremen-
tal cooperation [15]. In this paper we  consider the observation
quality information to design an incremental LMS  adaptive net-
work with improved robustness against the spatial variation of
observation noise statistics over the network. The step-sizes are
allotted so that nodes presenting poor performance are assigned
with small step-sizes and vice versa. We  formulate the step-
size assignment as a constrained optimization problem and then
solve it via the Lagrange multipliers approach. Since the opti-
mum  step size for each node requires information from other
nodes, with some justifiable assumptions, near-optimal solutions
are derived that depend only on local information. Simulation
results show that the incremental LMS  adaptive network with
the proposed step-sizes outperforms those with existing static
step-sizes.

Notation: Throughout the paper, we use boldface letters for ran-
dom quantities. The * symbol is used for both complex conjugation
for scalars and Hermitian transpose for matrices. ‖x‖2

�
denotes

weighted norm for a column vector x, which is given by x*�x; 1N
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Fig. 1. The structure of incremental LMS  adaptive network.

denotes an N × 1 vector with unit entries; while E represents the
statistical expectation operator.

2. The incremental LMS  adaptive network

We denote by set N  = {1, · · ·,  N}, a distributed network (e.g. a
WSN) with N nodes which communicate according to the incre-
mental protocol. At time i > 0, each node k ∈ N  has access to scalar
measurement dk(i) and 1 × M regression vector uk,i that are related
via

dk(i) = uk,iw
o + vk(i) (1)

where the M × 1 vector wo ∈ R
M is an unknown parameter and vk(i)

is the observation noise term with variance �2
v,k. Note that {dk(i),

uk,i} are time-realizations of zero-mean spatial data { dk, uk}. The
objective of the network is to estimate wo from measurements col-
lected at N nodes. Note that wo is the solution of the following
optimization problem

arg min
w
J(w) where J(w) = E{‖d − Uw‖2} (2)

where

U �

⎡⎢⎢⎢⎢⎣
u1

u2

...

uN

⎤⎥⎥⎥⎥⎦
N×M

, d �

⎡⎢⎢⎢⎢⎣
d1

d2

...

dN

⎤⎥⎥⎥⎥⎦
N×1

(3)

The solution of (2) (i.e. wo) is given by [5,6]

wo = R−1
u Rdu (4)

where

Rdu = E{U∗d}, and Ru = E
{
U∗U

}
(5)

In order to use (4) each node must have access to the global sta-
tistical information {Ru, Rdu} which in many applications are not
available or change in time. To address this issue and moreover,
to enable the network to respond to changes in statistical proper-
ties of data in real time, the incremental LMS  adaptive network is
proposed in [5].  The update equation for incremental LMS  is given
by

 k,i =  k−1,i + �ku
∗
k,i(dk(i) − uk,i k−1,i) (6)

where  k,i denotes the local estimate of wo at node k at time i and
�k is the step size. In the incremental LMS  algorithm, the calculated
estimates (i.e.  k,i) are sequentially circulated from node to node
as shown in Fig. 1.

A good measure of the adaptive network performance is the
steady-state mean-square deviation (MSD) which for each node k
is defined as follows

�k � E(‖ ̃k−1,∞‖2) = E(‖ ̃k−1,∞‖2
I ) (7)

where

 ̃k−1,i � wo −  k−1,i (8)

The mean-square performance of incremental LMS  algorithm is
studied in [6] using energy conservation arguments. The analysis
relies on the linear model (1) and the following assumptions

(i) { uk,i} are spatially and temporally independent.
(ii) The regressors { uk,i} arise from a circular Gaussian distribution

with covariance matrix Ru,k.

In [6],  a complex closed-form expression for MSD  has been derived.
However, in the case of small step sizes, simplified expressions for
the MSD  can be described as follows: for each node k, introduce the
eigen decomposition Ru,k = Uk�kU

∗
k

where Uk is unitary and �k is
a diagonal matrix of the eigenvalues of Ru,k

�k = diag{�k,1, �k,2, · · ·,  �k,M}, (node k) (9)

Then, according to the results from [5,6]:

�k ≈ 1
2

M∑
j=1

(∑N
�=1�

2
l
�2

v,l�l,j∑N
�=1�l�l,j

)
(10)

In the next section we use (10) to derive optimum step-sizes for
the incremental LMS  algorithm.

2.1. Assumption

To develop our proposed scheme we  consider the following
assumptions

(A.1) For k = 1, 2, · · · , N we have Ru,k = 	uIM where 	u is a real positive
constant.

(A.2) The observation noise variances {�2
v,k} are uniformly dis-

tributed over �2
v,k ∈ [a, b].

(A.3) The observation noise variance �2
v,k is available to node k.

The assumption (A.1) is valid when regressors { uk,i} arise
from an independent Gaussian distribution and is a simplifying
assumption that makes the expression (10) more mathematically
tractable. Also, in (A.2), the lower bound is determined by the sen-
sor measurement accuracy and the upper bound can be chosen to
provide robustness in learning. Finally, the assumption (A.3) can be
achieved by some training data [16].

2.2. Motivation

Let us assume that there are some nodes with low quality of
measurement in the network. We  denote these nodes by Ns (note
that Ns ⊂ N). We  have shown in [15] that this set of nodes can
drastically decrease the steady-state performance of an incremen-
tal LMS  adaptive network. Thus we need to reduce the effects of
theses nodes. On the other hand, as it is shown in [6],  �k is a mono-
tonically increasing function of {�k}. Thus we cannot find any set
{�1, �2, · · ·,  �N} ∈ R

N , in terms of �k and �2
v,k that minimize the

MSD. This means that, if the step sizes {�k} are large, the conver-
gence rate of the incremental LMS  algorithm will be rapid, but the
steady-state MSD  will increase and vice versa.1 Therefore, we  need
to minimize the �k in terms of {�1, �2, · · · , �N}, subject to a suitable

1 It also must be noted that as we have shown in [17,18] this is not the case
in  adaptive networks with noisy links, i.e. reducing the adaptation step-size may
actually increase the MSD.
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