
Computer Communications 67 (2015) 34–44

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

On service guarantees of fair-queueing schedulers in real systems

Luigi Rizzo a, Paolo Valente b,∗

a Università di Pisa, Italy
b Università di Modena e Reggio Emilia, Italy

a r t i c l e i n f o

Article history:

Received 18 September 2014

Revised 9 March 2015

Accepted 15 June 2015

Available online 20 June 2015

Keywords:

Packet scheduling

Performance analysis

Service guarantees

a b s t r a c t

In most systems, fair-queueing packet schedulers are the algorithms of choice for providing bandwidth and

delay guarantees. These guarantees are computed assuming that the scheduler is directly attached to the

transmit unit with no interposed buffering, and, for timestamp-based schedulers, that the exact number of

bits transmitted is known when timestamps need to be updated.

Unfortunately, both assumptions are unrealistic. In particular, real communication devices normally include

FIFO queues (possibly very deep ones) between the scheduler and the transmit unit. And the presence of

these queues does invalidate the proofs of the service guarantees of existing timestamp-based fair-queueing

schedulers.

In this paper we address these issues with the following two contributions. First, we show how to modify

timestamp-based, worst-case optimal and quasi-optimal fair-queueing schedulers so as to comply with the

presence of FIFO queues, and with uncertainty on the number of bits transmitted. Second, we provide analyt-

ical bounds of the actual guarantees provided, in these real-world conditions, both by modified timestamp-

based fair-queueing schedulers and by basic round-robin schedulers. These results should help designers to

make informed decisions and sound tradeoffs when building systems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Packet schedulers play a critical role in providing bandwidth and

delay guarantees on non-overprovisioned transmission links. They

are, e.g., one of the key components for guaranteeing the required

per-client frame rate and maximum jitter in IPTV managed networks,

as well as the required maximum latency in local networks for auto-

motive and avionics applications.

An important family of packet schedulers, namely fair-queueing

schedulers, originated for the most part as a support for the IntServ

QoS architecture [10]. In these schedulers, each packet flow, identi-

fied in whatever meaningful way, is associated with a weight, and re-

ceives, in the long term, a fraction of the link bandwidth proportional

to its weight. Proposed solutions range from plain round-robin [11]

to accurate timestamp-based algorithms [1,2,9].

IntServ has basically failed as a QoS architecture in the public In-

ternet. Nevertheless, fair-queueing schedulers or variants of them1,

are now the algorithms of choice in most bandwidth- and delay-

sensitive applications, including the previous examples. One of the

∗ Corresponding author. Tel.: +393357182270.

E-mail addresses: rizzo@iet.unipi.it (L. Rizzo), paolo.valente@unimore.it

(P. Valente).
1 Such as bandwidth servers in real-time contexts.

reasons is that the fair-queueing service scheme easily allows both

the desired minimum bandwidth to be guaranteed to each flow or

aggregate and the excess bandwidth to be evenly redistributed.

Besides, a series of very efficient yet accurate fair-queueing sched-

ulers has been devised [3,8,13,16]. All these schedulers guarantee a

worst-case deviation—with respect to a perfectly fair, ideal service—

comparable to that of the optimal WF2Q [2] scheduler. The main prac-

tical benefits of such tight service guarantees are a very low jitter and

a smooth (non-bursty) service, as thoroughly discussed in [16].

The lowest-cost scheduler in the above series is QFQ+[16], which

provides tight guarantees at the amortized cost of just Deficit Round

Robin (DRR) [11]. QFQ+ has replaced its predecessor, QFQ [3], in

Linux2 and proved to be even faster than DRR, exactly in the scenarios

where using an accurate scheduler matters [16].

Interestingly, the proofs in [16] are based on a slightly more

complex system model than that used the in the classical analysis

of packet schedulers. The reason why a different model has been

used coincides with the motivation for this paper: on a real system,

packet delays and jitters, as well as per-flow burstiness, may be much

higher than predicted by classical analysis. A deeper and general

2 QFQ is instead still available in FreeBSD.

http://dx.doi.org/10.1016/j.comcom.2015.06.009

0140-3664/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.comcom.2015.06.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2015.06.009&domain=pdf
mailto:rizzo@iet.unipi.it
mailto:paolo.valente@unimore.it
http://dx.doi.org/10.1016/j.comcom.2015.06.009


L. Rizzo, P. Valente / Computer Communications 67 (2015) 34–44 35

investigation of this problem was out of the scope of [16], whereas

it is exactly the focus of this paper3.

Problems of classical analysis

Classical analysis is done assuming that the transmit unit is di-

rectly attached to the scheduler with no interposed buffering, and, for

timestamp-based schedulers, that the exact number of bits transmit-

ted is known on every timestamp update. Neither of these assump-

tions holds in practice.

First, communication links, especially high-speed ones, are

equipped with FIFO queues (sometimes even large ones) to drive the

device and absorb the latency and jitter in the hardware and software

components that produce packets: memories, buses, interrupt ser-

vice routines, etc. (in this paper we focus only on FIFO queues in out-

put links). These FIFOs introduce an additional packet delay with any

scheduler. Above all, they invalidate, by their very presence, the cor-

rectness of fair-queueing timestamp-based schedulers (Section 6.1).

Second, network interfaces do not export a real-time indication of

the number of bits transmitted. Deriving this number from the time

may be hard too, because, depending on the MAC protocol, the rate

may vary with time.

Contributions of this paper

After illustrating the problem with a concrete example, in this pa-

per we make the following contributions:

• We provide a simple and consistent way to modify timestamp-

based, worst-case optimal and quasi-optimal fair-queueing

schedulers, so as to comply with the presence of FIFOs and with

uncertainty on the number of bits transmitted.

• We provide general worst-case bounds on bandwidth, packet

(queueing) delay and jitter, for both the resulting family of mod-

ified schedulers and basic round-robin schedulers. These bounds

take into account exactly the effects of FIFOs and uncertainty on

the number of bits transmitted.

• We instantiate and compare these bounds for most schedulers in

the above family as well as other popular schedulers.

As for the second contribution, we prove a good and not so obvi-

ous result: the worst-case additional packet delay caused by the FIFO,

with our FIFO-compliant versions of timestamp-based schedulers, is

equal at most to only the time needed to empty the FIFO, although the

FIFO not only introduces the latter additional queueing delay, but also

perturbs both the packet service order, as we show with a simple ex-

ample in Section 2, and the timestamp computation (Section 6.1). We

also prove an equivalent result in terms of service lag. In other words,

we prove that FIFOs cause the minimum possible service degradation.

While partially reassuring, this result means that, in any case, siz-

ing the output queues is critical to avoid that guarantees of sophis-

ticated schedulers degrade to those of, e.g., DRR, or, vice versa, it

means that resources should not be wasted on complex scheduling

algorithms when short queues are not available. In this respect, our

formulas should hopefully help designers find the right compromises

between efficiency and guarantees.

Organization of this paper

The rest of this paper is structured as follows. Section 2 shows the

problem through a simple example, while Section 3 briefly describes

related work. Sections 4 and 5 define the terms used in the paper and

provide some background on timestamp-based packet schedulers.

3 In more detail, in this paper we use the same correct model as in [16], and we

report an improved version of the core proofs in [16].

Fig. 1. A: the system model used in the literature, where the scheduler drives directly

an ideal link. B: a real system, made of the scheduler followed by an FIFO and the

output link.

The core of the paper starts in Section 6, where we define a mod-

ification scheme that allows timestamp-based fair-queueing sched-

ulers to comply with the presence of output FIFOs. Section 7 then

introduces the service metrics of interest. Resulting service guaran-

tees are computed in Section 9, using the proof machinery provided

in Section 8. Finally, Section 10 compares service guarantees with and

without queues, and discusses practical implications of our results.

2. A simple example

We start by showing how a queue between the scheduler and the

link not only introduces an obvious delay, but can also alter the ser-

vice order of packets. In the system shown in Fig. 1 on the left, the

scheduler is directly connected to the transmit unit, which pushes

bits to the communication link as soon as the scheduler makes its de-

cision; this is the idealized model of a system normally considered in

the literature. In the system on the right, the scheduler drives instead

an FIFO queue which is eventually drained by the transmit unit.

Suppose that in both systems the scheduler is, e.g., WF2Q+ [1],

which approximates on a packet-by-packet basis an ideal, infinitely

precise subdivision of the link’s capacity according to flows’ weights

(Section 5). Suppose then that at some time t0 a set of packets arrives

simultaneously4 for flows P1 . . . PN, all with the same weight φP = 1
2N .

Shortly after t0, the link becomes ready for transmission, and af-

ter another short interval a set of packets arrives for flow Q, which

has weight φQ = 1
2 � φP . For simplicity assume all packets have

length L.

Fig. 2 shows what happens in the system in the two configura-

tions. In the figure, a square represents a packet arriving into the

scheduler, a circle indicates a dequeue operation, and a cross indi-

cates the beginning of an actual transmission on the link.

The timing for the idealized case of Fig. 1A is shown in Fig. 2A.

Here dequeues and beginnings of transmissions coincide. With our

choice of weights, the scheduler correctly services one packet from

flows Pi and one from Q, although all the flows Pi were ready

before Q.

Fig. 2B shows instead the effect of a FIFO. The FIFO is instantly

ready to absorb a large number of packets, so it fills up with most/all

packets from flows Pi’s before packets from flow Q arrive. Packets

from Q therefore find a huge backlog and appear on the link only

after this initial burst is complete. As a result, the transmission or-

der and timing looks similar to the one of a DRR [11] scheduler, with

or without a FIFO before the link. If the FIFO is large, then the tight

service guarantees of WF2Q+ have vanished, and the additional com-

plexity in implementing a scheduler with better guarantees is com-

pletely wasted.

In addition, as shown in detail in Section 6.3, a phenomenon like

that in Fig. 2B greatly perturbs timestamps in a timestamp-based

4 Such an arrival pattern is extremely realistic: on many traffic sources or routers,

incoming traffic often comes in bursts (corresponding to the processing of a receive

interrupt, or the generation of a large TCP segment split into packets). We assume ar-

rivals to be exactly simultaneous for simplicity, but the problem shown in this section

can be highlighted also with slightly staggered arrivals, as well as with more complex

arrival patterns.



Download	English	Version:

https://daneshyari.com/en/article/447690

Download	Persian	Version:

https://daneshyari.com/article/447690

Daneshyari.com

https://daneshyari.com/en/article/447690
https://daneshyari.com/article/447690
https://daneshyari.com/

