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a  b  s  t  r  a  c  t

This  article  discusses  the  harmonic  and  intermodulation  performance  of  moderate  inversion  MOSFET
transconductors.  The  bulk  of  the  nMOS  transistor  is tied  to ground,  at all  levels  of  inversion,  including
moderate  inversion  and  the  transistor  is  operating  in the  saturation  region  where  it  behaves  qualita-
tively  as  a  constant  current  source.  The  current–voltage  characteristic  of  the  transistor  is approximated
using  a Fourier-series  model.  Using  this  model,  analytical  expressions  are  obtained  for  amplitudes  of  the
harmonics  and intermodulation  products  resulting  from  multi-sinusoidal  gate-to-source  input  voltages.
The special  case  of a  two equal-amplitude  sinusoidal  input  is considered  in  detail  and  the  results  are
compared  with  previously  published  results.
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1. Introduction

MOSFET linear and squarer transconductors are widely used
in the design of many analog blocks; see for example [1–5] and
the references cited therein. Most of the MOSFET-based transcon-
ductors/squarer circuits are designed assuming the transistors
are saturated and working in strong inversion; see for example
[4–6]. Recently, however, it has been shown that operating the
MOSFETs in moderate and weak inversion regions can minimize
third-harmonic distortion; see for example [7–12]. Of particular
interest here is the work reported in [11,12] that demonstrates the
existence of possible sweet spots in the moderate inversion region.
According to [11,12] these sweet spots can be exploited to mini-
mize fourth harmonic distortion. Minimization of fourth harmonic
distortion would result in a near ideal squaring function and help
obtain high performance analog multipliers and true squarer cir-
cuits. In [11,12], it is assumed that the MOSFETs are modeled by the
Enz–Krummanacher–Vittoz (EKV) model [13] shown in Eq. (1).

Id = SIs

[
ln(1 + exp

(
(Vgs − VT )

(2nVt)

)]2

(1)

In Eq. (1),  Id is the drain current, S ≡ W/L is the transistor strength
ratio, Is ≡ 2�nCoxV2

t is the transistor specific current, � is the elec-
tron mobility, n = (Cox + Cdep)/Cox is the subthreshold slope factor, Vt

is the thermal voltage, Vgs is the gate-to-source voltage and VT is the
threshold voltage. Eq. (1) provides a model for the current–voltage
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characteristics of the nMOS transistor, whose bulk is tied to ground,
at all levels of inversion, including moderate inversion. Eq. (1)
assumes that the transistor is operating in the saturation region
where it behaves qualitatively as a constant current source. While
Eq. (1) has a limited accuracy, it can be used for providing a useful
analytical tool for the analysis of harmonic and intermodulation
in moderate inversion MOSFET transconductors. However, in its
present form Eq. (1) cannot provide analytical expressions for the
relative harmonic and intermodulation products. Recourse to Tay-
lor series expansion was, therefore, inevitable in order to find the
zeros of the third- and fourth-order derivatives of Eq. (1) in order to
find the sweet points, where the harmonic distortion is minimized
[11,12]. However, by virtue of its derivation, the results obtained
in [11,12] are valid only under small signal conditions and cannot
predict the harmonic and intermodulation performance of the tran-
sistor under large signal conditions. It is, therefore, the purpose of
this paper to present an approximate model for Eq. (1).  The model is
valid over a wide range of input voltage and can, therefore, be used
to predict the sweet points even under large signal conditions.

2. Proposed model

Here we propose to represent Eq. (1) by using the Fourier-series
model of Eq. (2).

y = � +
N∑

n=1

bn sin
(

2n�

D
x
)

(2)

In Eq. (2),  y = Id/SIs represents the normalized drain current,
x = (Vgs − VT)/(2nVt) represents the normalized gate-to-source volt-
age, � represents the offset at x = 0. The parameters D and bn, n = 1,
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Table 1
Values of the parameters bn , n = 1, 3, 5, . . . of Eq. (2) for the characteristic of the
moderate inversion MOSFET transconductor of Eq. (1).  � = 0.480453, D = 30.0 and
bn = 0, n = 2, 4, 6, . . ..

b1 0.587665 b15 −0.007362 b29 0.001942
b3 −0.21740 b17 0.0055913 b31 −0.00170
b5 0.059580 b19 −0.004567 b33 0.001504
b7 −0.03490 b21 0.0036792 b35 −0.00133
b9 0.019586 b23 −0.003106 b37 0.001200
b11 −0.01379 b25 0.0026048 b39 −0.00107
b13 0.009506 b27 −0.002247 b41 0.000980

2, . . .,  N in Eq. (2) are fitting parameters that can be obtained using
the procedure described in [14,15]. This procedure is simple and
does not require extensive computing facilities or well-developed
software. For convenience, a brief description of this procedure is
given here. First, the relationship of Eq. (1) is calculated and the
offset value at x = 0 is removed. The resulting characteristic is nor-
malized so that the maximum ordinate is equal to 1.0 and then
mirror imaged to obtain a complete period = D. Second, this char-
acteristic is approximated by a number of straight-line segments
joined end to end. Using the slopes of these segments, it is easy
to obtain the parameters bn, n = 1, 2, . . .,  N using simple algebraic
calculations. Table 1 shows the resulting values. Using Eq. (2) and
the parameters in Table 1, the normalized drain current was  cal-
culated and compared to Eq. (1).  The results show that a relative
root-mean-square (RRMS) error, given by Eq. (3),  of 0.15% can be
achieved. This confirms the validity of Eq. (2) for the approximating
Eq. (1).

RRMSE =

√∑NP
i=1(yi(approximate) − yi(exact))

2

√∑NP
i=1(yi(exact))

2
(3)

In Eq. (3),  yi(exact) represents the exact value of y obtained from
Eq. (1),  yi(approximate) represents the approximate value of y obtained
from Eq. (2),  and NP represents the total number of points used in
the calculation.

3. Harmonic and intermodulation products

Eq. (2) can be used for predicting the amplitudes of the har-
monics and intermodulation products of the output resulting from
a normalized multi-sinusoidal gate-to-source voltage of the form

x(t) = X0 +
M∑

m=1

Xm sin ωmt (4)

In Eq. (4) Xm and ωm represent the normalized amplitude and
frequency of the mth gate-to-source voltage component and X0 rep-
resents the normalized DC bias voltage. Combining Eqs. (2) and (4)
and using the trigonometric identities

sin(  ̌ sin �) = 2
∞∑

k=0

J2k+1(ˇ) sin(2k  + 1)�

cos(  ̌ sin �) = J0(ˇ) + 2
∞∑

k=1

J2k(ˇ) cos(2k)�

where Jk(ˇ) is the Bessel function of order k, and after simple math-
ematical manipulations, it is easy to show that the amplitude of
the normalized drain current component of frequency

∑M
m=1˛mωm

and order
∑M

m=1|˛m|, where ˛m is a positive or negative integer or

zero, will be given by

Y˛1,˛2,...,˛M = 2
N∑

n=1

bn cos
(

2n�

D
X0

) M∏
m=1

J|˛m|
(

2n�

D
Xm

)
,

for
M∑

m=1

|˛m| = odd integer (5a)

Y˛1,˛2,...,˛M = 2
N∑

n=1
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(
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D
X0

) M∏
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J|˛m|
(

2n�

D
Xm

)
,

for
M∑

m=1

|˛m| = even integer (5b)

Using Eqs. (5a) and (5b) the amplitude of the normalized drain cur-
rent component of frequency ωr, r = 1, 2, . . .,  M,  can be expressed
as

Y1 = 2
N∑

n=1

bn cos
(

2n�

D
X0

)
J1

(
2n�

D
Xr

) M∏
m = 1
m /= r

J0

(
2n�

D
Xm

)
(6)

The amplitude of the kth odd-harmonic component of frequency
kωr of the normalized drain current can be expressed as

Yk = 2
N∑

n=1

bn cos
(

2n�

D
X0

)
Jk

(
2n�

D
Xr

) M∏
m = 1
m /= r

J0

(
2n�

D
Xm

)
(7)

The amplitude of the kth even-harmonic component of fre-
quency kωr of the normalized drain current can be expressed as

Yk = 2
N∑

n=1

bn sin
(

2n�

D
X0

)
Jk

(
2n�

D
Xr

) M∏
m = 1
m /= r

J0

(
2n�

D
Xm

)
(8)

The amplitude of the intermodulation product of frequency
kωr ± qωs, and order k + q = odd integer, of the normalized drain
current can be expressed as

Yk,q = 2

N∑
,n=1

bn cos

(
2n�

D
X0

)
Jk

(
2n�

D
Xr

)
Jq

(
2n�

D
Xs

) M∏
m = 1
m /= r, s

J0

(
2n�

D
Xm

)
(9)

The amplitude of the intermodulation product of frequency
kωr ± qωs, and order k + q = even integer, of the normalized drain
current can be expressed as

Yk,q = 2

N∑
,n=1

bn cos

(
2n�

D
X0

)
Jk

(
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D
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)
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(
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D
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J0

(
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D
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)
(10)

In a similar way  the amplitude of any intermodulation compo-
nent of any even or odd order can be obtained using Eqs. (5a) and
(5b).

4. Special case

To illustrate the use of Eqs. (6)–(10),  the special case of a nor-
malized gate-to-source voltage formed of two  equal-amplitude
sinusoids will be considered in detail. In this case Eq. (4) reduces to

x(t) = X0 + X1(sin ω1t + sin ω2t) (11)
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