
Ad Hoc Networks 45 (2016) 80–103

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc

Impact of hash value truncation on ID anonymity in Wireless Sensor

Networks

Ahmed Al-Riyami ∗, Ning Zhang , John Keane

School of Computer Science, The University of Manchester, Manchester, UK

a r t i c l e i n f o

Article history:

Received 17 October 2015

Revised 20 January 2016

Accepted 22 February 2016

Available online 22 March 2016

Keywords:

Hash value truncation

ID anonymity

Wireless Sensor Network

a b s t r a c t

Hash functions have been used to address security requirements such as integrity, message authentica-

tion and non-repudiation. In WSNs, these functions are also used to preserve sensor nodes’ identity (ID)

anonymity, i.e., they are used to generate and verify dynamic pseudonyms that are used to identify sen-

sor nodes in a communication session. In this latter application, there is an open issue as to how long

the output of a hash function (i.e. hash value) we should use in pseudonym generation. The longer the

hash value, the longer is the pseudonym, thus the harder it is to guess a pseudonym that is generated

by using a hash function. On the other hand, the use of a longer hash value also means that the band-

width and energy costs in transmitting the pseudonym will be higher. As sensor nodes typically have

limited resources and are battery powered, the balance between the protection level of ID anonymity

and performance and energy costs incurred in providing such a protection is an open issue. This paper

investigates the use of hash value truncation in preserving ID anonymity in WSNs and the impact of hash

value truncation on four criteria attributes (security against brute force attacks, probability of pseudonym

collisions, energy trade-off and end-to-end packet delivery delay). It reports the possible impacts of other

factors including the type and usage of hash functions, sensor node capabilities, adversary capabilities,

ability to resolve pseudonym collisions, network density and data collection rate. The results show that

the impacts of these factors may be contradictory. Therefore, the determination of an optimal level of

hash value truncation should consider all trade-offs brought by these factors.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Hash functions are computationally cheap to compute and hard

to reverse, so they have been used to construct cryptographic al-

gorithms or methods providing security services such as data in-

tegrity, origin authentication, entity authentication, anti-reply and

non-repudiation. They are widely used in application areas such

as virtual private networks (VPNs), secure electronic transaction,

secure email, digital signatures, digital cash, electronic commerce,

electronic voting and digital right management. As hash functions

are computationally more efficient than other cryptographic prim-

itives such as symmetric and asymmetric ciphers, they are also

commonly used in security provisioning in resource-constrained

networks such as Wireless Sensor Networks (WSNs). For example,

one of the basic security services in WSNs where hash functions

∗ Corresponding author. Tel.: +44 161 275 6270; fax: +44 161 275 6204.

E-mail addresses: ahmed.al-riyami@manchester.ac.uk , ahmed.alriyami

@gmail.com (A. Al-Riyami), ning.zhang@manchester.ac.uk (N. Zhang),

john.keane@manchester.ac.uk (J. Keane).

have also been applied is preserving the ID anonymity of sensor

nodes.
Preserving node ID anonymity is a key element in providing se-

curity and privacy in WSNs due to its importance in encumbering

the node capture attacks. Unlike the case in other wireless net-

works, sensor nodes in WSNs are prone to node capture attacks

due to their unattended nature of deployment. Node capture at-

tacks may result in data privacy compromise or further harm to

the network operations. However, Becher et al. [1] have proved

that such attacks are not as easy as they are assumed in litera-

ture. Adversaries need to invest time and effort to capture a node,

obtain the stored data or modify the code within the node’s mem-

ory, redeploy the captured node back to the network and start

to mount further security and privacy attacks through the rede-

ployed node. Therefore, adversaries often try to capture and com-

promise nodes that play a greater role in facilitating the network

operations such as cluster heads or parent nodes located closer to

the base station. Adversaries usually try to identify these nodes

by analysing the communication relationship among the nodes

through the study of the nodes’ IDs carried in the exchanged pack-

ets. Preserving node ID anonymity is to try to hide such identi-

http://dx.doi.org/10.1016/j.adhoc.2016.02.019

1570-8705/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.adhoc.2016.02.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/adhoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2016.02.019&domain=pdf
mailto:ahmed.al-riyami@manchester.ac.uk
mailto:ahmed.alriyami@gmail.com
mailto:ning.zhang@manchester.ac.uk
mailto:john.keane@manchester.ac.uk
http://dx.doi.org/10.1016/j.adhoc.2016.02.019

A. Al-Riyami et al. / Ad Hoc Networks 45 (2016) 80–103 81

fying information from adversaries. One way of achieving this is

through assigning dynamically changing identifiers (i.e. dynamic

pseudonyms) to the communicating nodes in each transmitted

packet.

A number of node ID anonymity schemes have been proposed

in literature [2–6] . In these schemes, a communication node is as-

signed to, and identified by, one or more dynamic pseudonyms

when it communicates with other nodes. Dynamic pseudonyms are

usually generated using a hash function on a per message basis,

i.e. the hash value produced from a hash function is used to con-

struct such a pseudonym. Therefore, there is an issue as to how

long a hash value we should use when generating a pseudonym.

The longer the hash value, the longer the pseudonym, thus the

stronger the protection the pseudonym may offer. However, the

use of a longer hash value also means that the energy cost in

transmitting the pseudonym will be higher. According to [7] , the

most energy-consuming task performed by a communication node

is data transmission. Therefore, it is important to investigate the

implications of using different hash value lengths for node ID

anonymity preservation and on performance and energy costs, and

what are the other factors that may influence the selection of

hash value lengths in the context of ID anonymity preservation

in WSNs.

This paper reports an investigation on the use of hash value

truncation to preserve ID anonymity in WSNs and the impact of

hash value truncation on the security and the performance and

energy costs of the approach. The investigation is based on two

existing ID anonymity schemes, the Efficient Anonymous Com-

munication (EAC) scheme [5] and the Cryptographic Anonymous

Scheme (CAS) [2] . The paper also reports the impacts on the trade-

off of other factors including the type and usage of hash func-

tions, sensor node capabilities, adversary capabilities, ability to re-

solve pseudonym collisions, network density and data collection

rate. Although hash truncation has been proposed to reduce data

transmissions in general [8–13] , the analysis of its impact on ID

anonymity and the costs incurred is lacking in the literature. The

results from this study may be useful where pseudonym schemes

are used to preserve ID anonymity in any resource-constrained

network environment such as WSNs. The framework in this study

may also be used to assess which level of truncation should be

applied for a given level of ID anonymity protection, what the

performance and energy costs are like for a given level of trun-

cation, and what are the other factors that should be considered

when deciding on the level of truncation to use in pseudonym

generations.

The rest of the paper is organised as follows:

Section 2 overviews cryptographic hash functions along with

potential attacks that may be mounted on the functions;

Section 3 describes two existing ID anonymity schemes, EAC

and CAS, that are based on hash functions; Section 4 describes the

system model and assumptions used in our study; Section 5 dis-

cusses the study methodology; Section 6 analyses the impact of

hash truncation on the security of the ID anonymity schemes and

Section 7 analyses its impact on the collision resistance property;

Sections 8 and 9 investigate the impact on the energy consump-

tion and the end-to-end packet delivery delays, respectively;

Section 10 discusses lessons derived from the study; and finally,

Section 11 concludes the paper.

2. Cryptographic hash functions

This section overviews cryptographic hash functions. It covers

the types and properties of cryptographic hash functions, and se-

curity attacks that may be mounted on the hash functions. It also

explains hash value truncation.

2.1. Types and properties

A hash function maps an input of an arbitrary finite bit-length

to an output of a fixed bit-length using a noninvertible compres-

sion process [14] . The term noninvertible here means that it is

computationally hard to reverse. The resulting output is called a

hash value, a hash tag or a digest. Hash functions can be clas-

sified into two groups [14] : unkeyed and keyed (see Fig. 2.1). An

Unkeyed Hash Function (UHF) uses an algorithm that accepts only

one input (data) in the process of generating a hash value. A Keyed

Hash Function (KHF) accepts a cryptographic key in addition to the

data to be hashed as input. KHFs are often used for achieving mes-

sage authentication where the values generated are termed Mes-

sage Authentication Codes (MACs). The following subsections pro-

vide more details about each hash function type along with their

properties.

2.1.1. Unkeyed Hash Functions (UHFs)

An n -bit UHF is denoted as: {0, 1} ∗ → {0, 1} n . The function

processes an arbitrary finite length input message ∈ {0, 1} ∗ and

returns a hash value ∈ {0, 1} n , where n ≥ 1. For a data input x ∈

{0, 1} ∗, H(x) = y represents the computation of the hash function

H on the data input x and returns the hash value y ∈ {0, 1} n . UHFs

have the following five properties [14] :

1. Compression: Maps a message of an arbitrary length to an n -bit

output, i.e., H : {0, 1} ∗ → {0, 1} n .

2. Ease of computation: For any x ∈ {0, 1} ∗, it is easy to compute

H (x).

3. Preimage resistance (also known as one-wayness): Given a hash

value y ∈ {0, 1} n (for which no preimage is known), it is com-

putationally infeasible to find an input x such that H(x) = y .

4. 2nd preimage resistance (also known as weak collision resis-

tance): Given an input x , it is computationally infeasible to find

a second input x ′ such that H(x ′) = H(x) .

5. Collision resistance (also known as strong collision resistance):

It is computationally infeasible to find two different inputs, x

and x ′ , such that H(x) = H(x ′) .

If the UHF satisfies the first four properties, it is called a One-

Way Hash Function (OWHF) and if it additionally satisfies the col-

lision resistance property then it is called a Collision Resistance

Hash Function (CRHF) [15] . If the input space of a CRHF is larger

than that of the output, then the function is a many-to-one map

function, which means that hash collisions are unavoidable (i.e.,

multiple inputs may result in the same hash value). However, find-

ing collisions in CRHFs is computationally difficult.

2.1.2. Keyed Hash Functions (KHF)

A KHF is a function that compresses an input of arbitrary length

into a fixed length hash value using a secondary input which is the

secret key. More formally, a KHF is a function H K : K × M → R ,

where the key space K = { 0 , 1 } k , the message space M = { 0 , 1 } ∗
and the range R = { 0 , 1 } n for some k , n ≥ 1. An instance compu-

tation of a KHF is represented as H K (x) = y where the key K ∈ {0,

1} k , x ∈ {0, 1} ∗ and y ∈ {0, 1} n . KHFs have the following properties

[14] :

1. Compression: H K maps an input of arbitrary finite length to an

output of fixed length (n bits), i.e., H K : {0, 1} k × {0, 1} ∗ → {0,

1} n .

2. Ease of computation: Given a secret key K , computing H K (x) for

all x ∈ {0, 1} ∗ is easy.

3. Key non-recovery: It is computationally infeasible to recover

the secret key K , given one or more input-hash pairs (x i , H K (x i))

for that K .

Download English Version:

https://daneshyari.com/en/article/447824

Download Persian Version:

https://daneshyari.com/article/447824

Daneshyari.com

https://daneshyari.com/en/article/447824
https://daneshyari.com/article/447824
https://daneshyari.com

