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a b s t r a c t 

Hash functions have been used to address security requirements such as integrity, message authentica- 

tion and non-repudiation. In WSNs, these functions are also used to preserve sensor nodes’ identity (ID) 

anonymity, i.e., they are used to generate and verify dynamic pseudonyms that are used to identify sen- 

sor nodes in a communication session. In this latter application, there is an open issue as to how long 

the output of a hash function (i.e. hash value) we should use in pseudonym generation. The longer the 

hash value, the longer is the pseudonym, thus the harder it is to guess a pseudonym that is generated 

by using a hash function. On the other hand, the use of a longer hash value also means that the band- 

width and energy costs in transmitting the pseudonym will be higher. As sensor nodes typically have 

limited resources and are battery powered, the balance between the protection level of ID anonymity 

and performance and energy costs incurred in providing such a protection is an open issue. This paper 

investigates the use of hash value truncation in preserving ID anonymity in WSNs and the impact of hash 

value truncation on four criteria attributes (security against brute force attacks, probability of pseudonym 

collisions, energy trade-off and end-to-end packet delivery delay). It reports the possible impacts of other 

factors including the type and usage of hash functions, sensor node capabilities, adversary capabilities, 

ability to resolve pseudonym collisions, network density and data collection rate. The results show that 

the impacts of these factors may be contradictory. Therefore, the determination of an optimal level of 

hash value truncation should consider all trade-offs brought by these factors. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Hash functions are computationally cheap to compute and hard 

to reverse, so they have been used to construct cryptographic al- 

gorithms or methods providing security services such as data in- 

tegrity, origin authentication, entity authentication, anti-reply and 

non-repudiation. They are widely used in application areas such 

as virtual private networks (VPNs), secure electronic transaction, 

secure email, digital signatures, digital cash, electronic commerce, 

electronic voting and digital right management. As hash functions 

are computationally more efficient than other cryptographic prim- 

itives such as symmetric and asymmetric ciphers, they are also 

commonly used in security provisioning in resource-constrained 

networks such as Wireless Sensor Networks (WSNs). For example, 

one of the basic security services in WSNs where hash functions 
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have also been applied is preserving the ID anonymity of sensor 

nodes. 
Preserving node ID anonymity is a key element in providing se- 

curity and privacy in WSNs due to its importance in encumbering 

the node capture attacks. Unlike the case in other wireless net- 

works, sensor nodes in WSNs are prone to node capture attacks 

due to their unattended nature of deployment. Node capture at- 

tacks may result in data privacy compromise or further harm to 

the network operations. However, Becher et al. [1] have proved 

that such attacks are not as easy as they are assumed in litera- 

ture. Adversaries need to invest time and effort to capture a node, 

obtain the stored data or modify the code within the node’s mem- 

ory, redeploy the captured node back to the network and start 

to mount further security and privacy attacks through the rede- 

ployed node. Therefore, adversaries often try to capture and com- 

promise nodes that play a greater role in facilitating the network 

operations such as cluster heads or parent nodes located closer to 

the base station. Adversaries usually try to identify these nodes 

by analysing the communication relationship among the nodes 

through the study of the nodes’ IDs carried in the exchanged pack- 

ets. Preserving node ID anonymity is to try to hide such identi- 
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fying information from adversaries. One way of achieving this is 

through assigning dynamically changing identifiers (i.e. dynamic 

pseudonyms) to the communicating nodes in each transmitted 

packet. 

A number of node ID anonymity schemes have been proposed 

in literature [2–6] . In these schemes, a communication node is as- 

signed to, and identified by, one or more dynamic pseudonyms 

when it communicates with other nodes. Dynamic pseudonyms are 

usually generated using a hash function on a per message basis, 

i.e. the hash value produced from a hash function is used to con- 

struct such a pseudonym. Therefore, there is an issue as to how 

long a hash value we should use when generating a pseudonym. 

The longer the hash value, the longer the pseudonym, thus the 

stronger the protection the pseudonym may offer. However, the 

use of a longer hash value also means that the energy cost in 

transmitting the pseudonym will be higher. According to [7] , the 

most energy-consuming task performed by a communication node 

is data transmission. Therefore, it is important to investigate the 

implications of using different hash value lengths for node ID 

anonymity preservation and on performance and energy costs, and 

what are the other factors that may influence the selection of 

hash value lengths in the context of ID anonymity preservation 

in WSNs. 

This paper reports an investigation on the use of hash value 

truncation to preserve ID anonymity in WSNs and the impact of 

hash value truncation on the security and the performance and 

energy costs of the approach. The investigation is based on two 

existing ID anonymity schemes, the Efficient Anonymous Com- 

munication (EAC) scheme [5] and the Cryptographic Anonymous 

Scheme (CAS) [2] . The paper also reports the impacts on the trade- 

off of other factors including the type and usage of hash func- 

tions, sensor node capabilities, adversary capabilities, ability to re- 

solve pseudonym collisions, network density and data collection 

rate. Although hash truncation has been proposed to reduce data 

transmissions in general [8–13] , the analysis of its impact on ID 

anonymity and the costs incurred is lacking in the literature. The 

results from this study may be useful where pseudonym schemes 

are used to preserve ID anonymity in any resource-constrained 

network environment such as WSNs. The framework in this study 

may also be used to assess which level of truncation should be 

applied for a given level of ID anonymity protection, what the 

performance and energy costs are like for a given level of trun- 

cation, and what are the other factors that should be considered 

when deciding on the level of truncation to use in pseudonym 

generations. 

The rest of the paper is organised as follows: 

Section 2 overviews cryptographic hash functions along with 

potential attacks that may be mounted on the functions; 

Section 3 describes two existing ID anonymity schemes, EAC 

and CAS, that are based on hash functions; Section 4 describes the 

system model and assumptions used in our study; Section 5 dis- 

cusses the study methodology; Section 6 analyses the impact of 

hash truncation on the security of the ID anonymity schemes and 

Section 7 analyses its impact on the collision resistance property; 

Sections 8 and 9 investigate the impact on the energy consump- 

tion and the end-to-end packet delivery delays, respectively; 

Section 10 discusses lessons derived from the study; and finally, 

Section 11 concludes the paper. 

2. Cryptographic hash functions 

This section overviews cryptographic hash functions. It covers 

the types and properties of cryptographic hash functions, and se- 

curity attacks that may be mounted on the hash functions. It also 

explains hash value truncation. 

2.1. Types and properties 

A hash function maps an input of an arbitrary finite bit-length 

to an output of a fixed bit-length using a noninvertible compres- 

sion process [14] . The term noninvertible here means that it is 

computationally hard to reverse. The resulting output is called a 

hash value, a hash tag or a digest. Hash functions can be clas- 

sified into two groups [14] : unkeyed and keyed (see Fig. 2.1 ). An 

Unkeyed Hash Function (UHF) uses an algorithm that accepts only 

one input (data) in the process of generating a hash value. A Keyed 

Hash Function (KHF) accepts a cryptographic key in addition to the 

data to be hashed as input. KHFs are often used for achieving mes- 

sage authentication where the values generated are termed Mes- 

sage Authentication Codes (MACs). The following subsections pro- 

vide more details about each hash function type along with their 

properties. 

2.1.1. Unkeyed Hash Functions (UHFs) 

An n -bit UHF is denoted as: {0, 1} ∗ → {0, 1} n . The function 

processes an arbitrary finite length input message ∈ {0, 1} ∗ and 

returns a hash value ∈ {0, 1} n , where n ≥ 1. For a data input x ∈ 

{0, 1} ∗, H(x ) = y represents the computation of the hash function 

H on the data input x and returns the hash value y ∈ {0, 1} n . UHFs 

have the following five properties [14] : 

1. Compression: Maps a message of an arbitrary length to an n -bit 

output, i.e., H : {0, 1} ∗ → {0, 1} n . 

2. Ease of computation: For any x ∈ {0, 1} ∗, it is easy to compute 

H ( x ). 

3. Preimage resistance (also known as one-wayness): Given a hash 

value y ∈ {0, 1} n (for which no preimage is known), it is com- 

putationally infeasible to find an input x such that H(x ) = y . 

4. 2nd preimage resistance (also known as weak collision resis- 

tance): Given an input x , it is computationally infeasible to find 

a second input x ′ such that H(x ′ ) = H(x ) . 

5. Collision resistance (also known as strong collision resistance): 

It is computationally infeasible to find two different inputs, x 

and x ′ , such that H(x ) = H(x ′ ) . 

If the UHF satisfies the first four properties, it is called a One- 

Way Hash Function (OWHF) and if it additionally satisfies the col- 

lision resistance property then it is called a Collision Resistance 

Hash Function (CRHF) [15] . If the input space of a CRHF is larger 

than that of the output, then the function is a many-to-one map 

function, which means that hash collisions are unavoidable (i.e., 

multiple inputs may result in the same hash value). However, find- 

ing collisions in CRHFs is computationally difficult. 

2.1.2. Keyed Hash Functions (KHF) 

A KHF is a function that compresses an input of arbitrary length 

into a fixed length hash value using a secondary input which is the 

secret key. More formally, a KHF is a function H K : K × M → R , 

where the key space K = { 0 , 1 } k , the message space M = { 0 , 1 } ∗
and the range R = { 0 , 1 } n for some k , n ≥ 1. An instance compu- 

tation of a KHF is represented as H K (x ) = y where the key K ∈ {0, 

1} k , x ∈ {0, 1} ∗ and y ∈ {0, 1} n . KHFs have the following properties 

[14] : 

1. Compression: H K maps an input of arbitrary finite length to an 

output of fixed length ( n bits), i.e., H K : {0, 1} k × {0, 1} ∗ → {0, 

1} n . 

2. Ease of computation: Given a secret key K , computing H K ( x ) for 

all x ∈ {0, 1} ∗ is easy. 

3. Key non-recovery: It is computationally infeasible to recover 

the secret key K , given one or more input-hash pairs ( x i , H K ( x i )) 

for that K . 
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