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In wireless communication systems users compete for communication opportunities through a medium
access control protocol. Previous research has shown that selfish behavior in medium access games could
lead to inefficient and unfair resource allocation. We introduce a new notion of reciprocity in a medium
access game and derive the corresponding Nash equilibrium. Further, using mechanism design we show
that this type of reciprocity can remove unfair/inefficient equilibrium solutions.

The best response learning method for the reciprocity game framework is studied. It demonstrates that
the game converges to the unique and stable Nash equilibrium if the nodes have low collision costs or
high psychological sensitivity. For symmetric games the converged Nash equilibrium turns out to be
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1. Introduction

Using game theory to investigate the performance of medium
access control (MAC) protocols have resulted in interesting in-
sights. Game theory allows us to incorporate a variety of behaviors
of the wireless nodes into the MAC design. One of these is the no-
tion of reciprocity. The notion of reciprocity implies that users are
neither selfish nor altruistic all the time. Rather, “they are nice to
those who are nice to them, but mean to people who harm them”.
A corresponding property is fairness that is also dealt with in our
analysis. One of the main results we derive is that reciprocity
changes the best response dynamics of the game and renders
bad Nash equilibria to become unstable.

A homo reciprocan model for medium access control is investi-
gated in [1] where one notion of fairness is considered. In [2,10],
the effect of compassion is studied. Game theory has been used
to analyze opportunistic radio networks in [3]. Packet collisions
when multiple user transmit simultaneously usually provides an
incentive for selfish behavior [6]. User can selfishly cheat in a
MAC game, for example, an user may not respect the random expo-
nential backoff in CSMA/CA by adjusting the contention window
arbitrarily to its minimum size. In this paper, we introduce the no-
tion of Rabin’s fairness Nash equilibrium [4] to analyze a medium
access control game model with reciprocity. In our model, users
have an incentive to punish selfish behaviors that allows them to
avoid unfair equilibrium under certain conditions.
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In [7], analysis of the fundamental equilibrium properties of the
one shot random access game model is provided. It is observed that
all centrally controlled optimal solutions are subsets of this game
solution. This is extended in [8] to characterize the existence of
uniqueness of Nash equilibria.

The transient network behavior and iterative game strategies
are the focus of the studies in [9-12]. Effect of reciprocity on tran-
sient network behavior is studied in [9] using the notion of conjec-
tural equilibrium. The operating points of the throughput region
are shown to be conjecture equilibria. Dynamic altruistic behavior
in Aloha random access game and its effect on altruistic behavioral
stability is studied in [10].

We note that the idea of reciprocity is a “moral” correlation
device that can help the medium access protocol to avoid bad equi-
librium solutions. We also discuss methods to achieve good equi-
librium solutions with respect to collision cost and psychological
sensitivity of users. We show that an intervening mechanism de-
signer [5] can remove the undesirable network equilibrium of
MAC games by affecting the channel collision probability. The con-
tributions of this paper are different from some of the previous
works. For example, we address reciprocity in normal form MAC
games while [9] addresses dynamic reciprocity. Moreover, the no-
tion of reciprocity in [9] is different in that their addressed equilib-
rium is a conjectural equilibrium while we study the Nash
equilibrium. One shot random access games studied in [7,8] do
not consider fairness. Also unlike [8], our proposed learning mech-
anism converges to the unique stable Nash. Also in the symmetric
game the converged Nash of our best response learning is the fair
strategy while the best response in [8] does not guarantee to
achieve the fair Nash.
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The paper is organized as follows. In Section 2 we discuss the
standard medium access game model. Reciprocity and fairness in
these games are presented in Section 3. In Section 4 a best response
learning method has been presented. Simulations and numerical
results are presented in Section 5. Concluding remarks are given
in Section 6.

2. Standard medium access game

Let’s consider a set of wireless nodes denoted by
T ={1,2,...,N} contending for spectrum opportunities. If user i
transmits successfully it obtains an utility us, if the transmission
fails the utility is uy and waiting for a spectrum opportunity leads
to an utility equal to uj s.t. us > up, > uy. Let the random spectrum
access utility vector for user i be denoted by the vector notation
(us;, up,, Uz ). Then the random access game G is defined by the tuple
G =(Z, {pi}ia» {Wi}iy), where p; € [0,1] is the node transmission
probability or the mixed strategy of the ith node in the game. Let
us denote the channel access probability vector of the users by
P = (py,..-,Dy)- Then the game ¢ is said to be in the standard form
if the utility vectors are in the form of u; = (1,0, —6;), where 6; > 0
is the cost of packet failure for user i.

Definition 2.1. A channel access probability p* is said to be a Nash
equilibrium if no node can improve its payoff by unilateral
deviation, i.e. u;(p;,p*;) = w;i(p;,p*;), Vp;.

Two games are equivalent to each other if they have the same
Nash equilibria. It can be shown that any random access game is
equivalent to a standard random access game by selecting 0; = Zf:;‘g
[8]. Therefore, we have considered the standard random access
games for simplicity.

2.1. Steady-state equilibrium strategies

Assume wireless nodes or players 1 and 2 are contending for the
available spectrum. Then for the chosen strategies of transmit (T)
or buffer (B) they receive payoffs according to the matrix M in Ta-
ble 1. It can be easily shown that this game has two pure Nash
equilibria, namely, (T, B), (B, T) and one mixed strategy equilibrium

= 1+0> The pure equilibria are not desirable here since in this
case one’user is transmitting and the other is buffering all the time.
Fairness property of the mixed strategies [13] suggests the mixed
strategy o is the focal equilibrium of the random access game.

Since the probability that at least one user other than user i also
transmits is given by

a(p-) =1-JJ1 -py. (1)

A
the expected utility of user i playing the random access game with
strategy p is

ui(p;, Pi) = pil-0iq;(p_;) +
which can be written as

H(l - Pj) -

J#i

(1 —qi(p-»))] ()

0;

=pi(1+6) 110
1

ui(p;, P_i) 3)

p* is a Nash equilibrium, if and only if for all i € Z, the followings
hold true [8]:

Table 1

Payoff matrix (M).
Strategy Transmit Buffer
Transmit -0, —0 1,0
Buffer 0,1 0,0

(1) pi = 1 if Hj#l( ) > 1+()
(ii) p; € (0,1) ﬁEA p) =1
(iii) p; =0 if [[.(1 - p;) < 135

Cases (i) and (iii) indicate that following the pure Nash equilibrium
strategies, depending on the value of the payoff 0;, could lead to
some nodes not transmitting at all (unfairness) or every node trans-
mit with probability 1 (deadlock). To alleviate this problem we build
the idea of reciprocity into the model. In this model, as described la-
ter, the utility function consists of two terms: (a) material and (b)
psychological. We show that, reciprocity changes the best response
dynamics so that bad Nash equilibria can be made unstable.

3. Fairness and reciprocity in a medium access game

Consider a two-player game in normal form (Si,S,, 71, 7>)
where, for i =1,2, S; = {T,B} is the set of actions for player i and
7;(S1,52) is the payoff for player i according to the payoff matrix
M where s; € S; and another player j, selects s; € S;. Let A(S;) denote
the set of mixed strategies of player i. For each mixed strategy vec-
tor o; = (0i(T), gi(B)) € A(Si), ZSE{TB}G,(S,) =1 where g;(s;) de-
notes the probability that player i will select the action s; € S;. Then

o> 0)05(s)) (4)

s;e{T.B}s;e{T.B}

(01, 05) = i(Si,85)0i(s
is the expected payoff for player i.

Fairness Nash formulation [4] suggests that users engage in a
type of reciprocal fairness, i.e. users are neither selfish nor altruis-
tic all the time. Rather, “they are nice to those who are nice to
them, but mean to people who harm them”. Therefore modelling
the reciprocity of nodes in a medium access game can be done
using the following model. For each (6; € A(S;), let

I(a)) = {mi(6i,0)), Tj(0),6:)} (5)

I1(a;) is the set of pair of payoffs by both players. Let values nj’? (6)
and 7}(a;) denote the highest and lowest values that are Pareto effi-
cient in I1(g;), and the equitable payoff is

7-[]"1 (Gj) + njl'(a-j) (6)

2

Let n}”""(aj) be the worst possible payoff for player j in the set I1(q;).
The first step to incorporate fairness into the analysis is to define a
sort of “kindness” function f which measures how kind players are
being to each other. From previous payoff regions, the kindness
function can be defined as the following.

7 (a)) =

Definition 3.1. Suppose player i selects action s; € S; and believes
that player j selects the mixed strategy o; € A(S;). Then, player i's
kindness to player j is

75(0551)— J<“f) h min
7,"," i (06;) # T [

fitsnop = { Moy ) =) )
0 Otherwise

Definition 3.2. Player i's belief about how kind player j is to him
given it's belief that player j is playing the mixed strategy
o € A(S)) is given by

7;(6,0j)—7; (67) i
ﬂqna{mjﬁwa N (8)
0 Otherwise

In order to incorporate fairness into the payoffs, each user max-
imizes a convex combination of his material and psychological
payoff as shown in (9). Suppose player i believes that player j is
playing the mixed strategy o; € A(S;) and furthermore i believes
that j believes that i is playing the mixed strategy a; € A(S;) then
i's expected payoff from playing the pure strategy s; is given by:
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