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a  b  s  t  r  a  c  t

Soil  water  storage  (SWS)  information  at high  space–time  resolution  is critical  for  understanding  numer-
ous  hydrological,  biological  and chemical  processes.  However,  obtaining  such  information  is  time-  and
cost-intensive  due  to  the  strong  variability  of  SWS.  We  hypothesized  that  SWS  information  could  be  pre-
dicted  accurately  at high  space–time  resolution  and  low  cost  using  the  temporal  stability  (TS)  concept.
The  water  contents  of different  soil layers  down  to 1.0  m in  depth  were  measured  along  a  3.1  ha slope
from  July  2013  to  July  2015  at 4  locations  using  automatic  measurement  systems  and  at  103  locations
manually.  These  values  were  multiplied  by depth  to convert  them  into  SWS  (0–0.2,  0.2–0.5,  0.5–1.0,  and
0–1.0  m).  The  spatial  patterns  of SWS  were  temporally  stable.  The  SWS  values  were  predicted  at  high
space–time  resolution  by combining  high-space  and  low-time  resolution  data  and  high-time  and  low-
space  resolution  data  using  two  methods.  The  first method  (M1)  was based  on  the  most  temporally  stable
locations  (MTSLs)  among  four  auto-measured  locations.  The second  method  (M2)  identified  the  MTSLs
from 107  locations  including  103 manually  measured  locations  of the  four soil  layers.  The  MTSLs  of M2
were  assigned  high-time  resolution  data based  on  the  relationships  between  the  MTSLs  of  M1  and  M2
at  each  soil  layer.  Once  the MTSL  and  temporal  stability  relationship  (TSR)  of these  two  methods  were
identified,  the  SWS  data  for one  auto-measured  location  (A4)  were  sufficient  to predict  the spatially  aver-
aged and  spatially  distributed  SWS  for the  slope  at any  time.  Although  the predictive  errors  for  M1  were
generally  acceptable,  M2 was  more  accurate  than  M1  in most  of the  cases  studied.  The  estimation  errors
for M2  were  all  less  than  10%  and were  generally  less  than  5%.  Among  the  four investigated  soil  layers,  M2
outperformed  M1  for the  0–0.2 and  0–1.0  m  soil  layers,  and  the  two  methods  yielded  comparable  results
for  the 0.5–1.0  m  soil  layer. Meanwhile,  although  M1 slightly  outperformed  M2  for  the  0.2–0.5  m  soil
layer,  both  performed  well.  This  method  for predicting  SWS  at  high  accuracy  and  low  cost  could  improve
the  prediction  accuracy  of early  drought  warnings  and  agricultural  water  resources  management.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Soil water storage (SWS) is a critical factor affecting many
hydrological processes including runoff, infiltration, percolation,
evapotranspiration, and water uptake by plants (Heathman et al.,
2009). For example, antecedent SWS  at surface soil layer is a crit-
ical factor controlling runoff generation (Huza et al., 2014), which
can change the proportion of precipitation fractionating into sur-
face and subsurface flows (Massari et al., 2014). However, obtaining
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SWS  at high space resolution as well as high time resolution, even
within a small study area, is difficult given its dynamic spatial and
temporal behavior (Brocca et al., 2009).

Monitoring soil water behaviors over a large area remains a
formidable challenge. Remote sensing has been regarded as one
of the most efficient soil water monitoring techniques (Vereecken
et al., 2014). However, its substantial disadvantages raise questions
about the accuracy of the measurements and thus the validity of
this method. The measurement accuracy is questioned especially
in areas with varied vegetation cover and soil roughness (Alvarez-
Mozos et al., 2009). Restrictions of surface measurements (often
<0.05 m)  pose another challenge to understand whole-profile
hydrological dynamics. Additionally, the difficulty in validating
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remote sensing measurements is due in part to the need to select an
appropriate number of point measurements for robust estimation
(Bramer et al., 2013) and the variable depth of penetration (Adams
et al., 2013).

Among the available approaches, manual (conducted by a
human using identical portable devices at different locations)
or automatic (conducted using a fixed probe in soils) in-situ
point measurements are the most straightforward and accurate
(Famiglietti et al., 1998). Automated sensors with data logging
capacity can record SWS  data at high time resolution (e.g., min-
utes to hours). However, the cost of these instruments restricts
their installation at high densities, especially over large study areas.
In contrast, manual surveys using a portable probe can provide
SWS  data at high spatial resolution. Although less expensive, the
high time and labor requirements restrict the temporal resolution
of manual SWS  data collection surveys. To save money and labor,
SWS  measurements are generally reported at high-space, low-time
resolution (e.g., Gao and Shao, 2012a) or high-time, low-space res-
olution (e.g., Martínez-Fernández and Ceballos, 2003) or low-time,
low-space resolution (e.g., Ferreyra et al., 2002) depending on the
study aim.

Ideally, methods for obtaining high-resolution SWS  data should
meet two conditions: high accuracy and low cost. Thus, it would
be of great interest to reduce the cost of these point measure-
ments. The temporal stability (TS) of soil moisture is a natural
phenomenon; the spatial patterns of soil moisture remain stable
even though the soil moisture content may  change greatly over
time. This phenomenon has been applied extensively to identify
temporal stability locations (TSLs) at different study areas (Zhu and
Lin, 2011; Biswas, 2014; Zucco et al., 2014; She et al., 2014). The TSL
can predict the average SWS  for an area of interest and is consid-
erably promising for minimizing costs (Vachaud et al., 1985; Gao
et al., 2011; Gao et al., 2015a). Its low estimation error (e.g., within
3%) makes this approach especially valuable (Choi and Jacobs, 2007;
Biswas, 2014).

Repeated measurement over a certain period (e.g., approxi-
mately 12 times per year) is still the most common way  to identify
TSLs. The time resolution of the estimated average SWS  is deter-
mined by the TSL monitoring frequency. However, achieving high
time resolution using manual measurements, even at a single TSL
over a long time, requires a large amount of labor. Meanwhile,
the soil disturbance resulting from installing automatic measure-
ment devices at a TSL may  cause the locations to cease being a
TSL, and this approach is unable to record a high-resolution dataset
during the identifying period for the TSL. To resolve these issues,
the combination of manual (limited measurement frequency) and
automated (limited measurement locations) measurements can be
used to predict SWS  at high space–time resolution.

Accordingly, the main objective of the present study was to
examine whether the concept of TS can be used to predict the mean
value and spatial distribution of SWS  at high space–time resolution
and a low cost.

2. Materials and methods

2.1. Study area

The studied hillslope (3.1 ha) is located in the Sunjia agricultural
watershed (116◦53′58′′–116◦54′28′′E, 28◦13′45′′–28◦14′12′′N),
Jiangxi Province, China (Fig. 1). The study area has a typical warm
and humid subtropical monsoon climate. Based on data obtained
from Yingtan weather station (1954–1999), the mean annual
precipitation is 1795 mm,  nearly half of which falls between April
and early July, and the mean annual daily temperature is 17.8 ◦C.
The potential evapotranspiration demand is 1229 mm  as estimated

Table 1
Selected soil properties in three soil layers (0–0.2, 0.2–0.5, and 0.5–1.0 m).

Soil propertiesa n 0–0.2 m 0.2–0.5 m 0.5–1.0 m

Sand content (%) 15 39.6 ± 7.6 35.4 ± 7.4 34.6 ± 6.0
Silt content (%) 15 26.5 ± 3.7 26.8 ± 3.2 26.3 ± 3.1
Clay content (%) 15 34.0 ± 4.5 37.9 ± 5.7 39.1 ± 5.4
Bulk density (g/cm3) 15 1.36 ± 0.11 1.42 ± 0.08 1.41 ± 0.09
KS (mm/min) 15 0.76 ± 0.73 0.08 ± 0.10 0.08 ± 0.09
SOM (g/kg) 15 11.8 ± 3.1 4.9 ± 1.0 3.5 ± 0.7
�S 6 45.7 ± 2.3 46.9 ± 2.9 43.8 ± 3.6
�FC 6 30.1 ± 2.8 31.4 ± 1.8 33.7 ± 1.4
�WP 6 22.7 ± 1.6 23.4 ± 2.6 26.0 ± 1.6

a KS, soil saturated conductivity; SOM, soil organic matter; �S, saturated soil water
content; �FC, field capacity; �WP, permanent wilting point; n, number of samples.

by the FAO Penman–Monteith model. The soils in this region are
mainly derived from Quaternary red clay and are classified as
ultisols based on the USDA Soil Taxonomy (Soil Survey Staff, 2010).

The land uses are peanut crop (79%), twenty-year-old citrus with
an approximate height of 2.4 m (19%), and three-year-old citrus
intercropped with peanut crop (2%) (Fig. 1). The soils are mainly
clay loam soil in texture. Some selected soil properties for the top
1.0 m layer are presented in Table 1.

2.2. Data collection

The overall soil water dataset was  divided into two groups
according to the measurement time interval: an interval of 30 min
using an auto-measuring device (based on frequency domain
reflectometry, FDR) and an interval of approximately 15 days using
a portable probe (based on time domain reflectometry, TDR; Trime
PICO, IMKO, Ettlingen, Germany). Both groups of data were col-
lected from July 2013 to July 2015. Four locations were selected
for automated measurement (the locations between the upper and
the middle portions of the slope for citrus and peanut crops and
between the lower and the middle portions of the slope for both
land uses, named A1, A2, A3, and A4, respectively) and 103 locations
were selected for manual measurements (Fig. 1). At the four auto-
measurement locations, probes were installed at 0.05, 0.2, 0.4, and
0.8 m soil depths in 2012. At each manual measured location, a spe-
cial polyvinyl chloride access tube (length, 2 m;  diameter 0.05 m)
was installed in April 2013. The volumetric soil water content �(%)
down to a 1.0 m depth in 0.2 m intervals was  measured on 43 occa-
sions using the identical portable probe at 103 locations (no data
are available from late January to the end of February in 2014 due
to technical problems).

Due to the difference in depth intervals, measurements from
both devices were converted to obtain the SWS  at four equivalent
soil layers: 0–0.2, 0.2–0.5, 0.5–1.0 and 0–1.0 m.  The SWS  (mm)  of
location i at depth k (m)  and time j, SWSik (j), was  calculated from
the �(i,j,k) (%, v/v) data based on the soil depth. For the manual mea-
surement locations, the SWS  was  calculated using the following
trapezoidal rules:

SWSi0−0.2(j) = �(i, j, 0 − 0.2) × 20
10

(1)

SWSi0.2−0.5(j) =
[
�(i, j, 0.2 − 0.4) × 20 + �(i, j, 0.4 − 0.6) × 10

]
10

(2)

SWSi0.5−1.0(j) =

[
�(i, j, 0.4 − 0.6) × 10 + �(i, j, 0.6 − 0.8) × 20 + �(i, j, 0.8 − 1.0) × 20

]
10

(3)

SWSi0−1.0(j) = SWSi0−0.2(j) + SWSi0.2−0.5(j) + SWSi0.5−1.0(j) (4)
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