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a b s t r a c t

In arid and semi-arid areas where agriculture competes keenly with ecosystem for water, integrated
management of both surface water (SW) and groundwater (GW) resources at a basin scale is crucial, but
often lacks scientific support. This study implemented physically-based, fully integrated SW–GW model-
ing in optimizing water management, and performed surrogate modeling to replace the computationally
expensive model with simple response surfaces. Water use conflicts between agriculture and ecosystem
in Heihe River Basin (HRB), the second largest inland river basin in China, were investigated. Based on the
integrated model GSFLOW (Coupled Ground-Water and Surface-Water Flow Model), the conjunctive use
of SW and GW for irrigation in the study area was optimized using a surrogate-based approach named
DYCORS (DYnamic COordinate search using Response Surface models). Overall, the study demonstrated
that, with the surrogate modeling approach, an expensive integrated model could be efficiently incor-
porated into an optimization analysis, and the integrated modeling would make feasible a physically
based interpretation of the optimization results. In the HRB case study, the surrogate-based optimization
suggested a very different time schedule of water diversion in opposite to the existing one, indicating
the critical role of SW–GW interactions in the water cycle. With the temporal optimization, a basin-scale
water saving could be achieved by reducing non-beneficial evapotranspiration. In addition, the current
flow regulation in HRB may not be sustainable, because the ecosystem recovery in the lower HRB would
be at the cost of the ecosystem degradation in the middle HRB.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In many arid and semi-arid inland river basins, irrigated farm-
lands compete keenly with the regional ecosystem for scarce water
resources (Krebs et al., 1999; Wichelns and Oster, 2006). Typi-
cally, the temporal mismatch between river flow and irrigation
water demand is notable in such areas, and flow conservation for
natural ecosystem is an important management concern. In areas
where surface water (SW) and groundwater (GW) strongly interact,
aquifers could behavior like “reservoirs”, with which the temporal
mismatch and/or the human-nature competition may be alleviated
(Forrester and Keane, 2009; Simons et al., 2015; Singh, 2014a).
In water-limited environments, groundwater pumping in addi-
tion to surface water diversion for irrigation is a common practice
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(Cosgrove and Johnson, 2005; Liu et al., 2010; Singh, 2014a; Smout
and Gorantiwar, 2005), and optimizing the conjunctive use of SW
and GW is an important research topic for agricultural water man-
agement (Bouwer, 2002; Khare et al., 2006; Kumar et al., 2013;
Safavi and Esmikhani, 2013; Singh, 2014b).

Simulation-optimization (SO) approaches are widely used
in water resources management and planning, which couple
hydrologic or hydro-agronomic modeling with mathematical opti-
mization (Singh, 2014a,b). They have been applied to address
different irrigation water management issues, such as improving
crop productivity by optimizing land and water allocation (Khare
et al., 2006; Smout and Gorantiwar, 2005; Singh and Panda, 2012),
altering Best Management Practices (BMPs) to adapt to climate
change (Cai et al., 2015), assessing optimal locations and pumping
rates in coastal aquifers to avoid saltwater intrusion (Bhattacharjya
and Datta, 2005; Mantoglou and Papantoniou, 2008; Reichard and
Johnson, 2005), and controlling non-point pollution of agriculture
(Tan et al., 2011). SO has been implemented to the issue of con-
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junctive use of SW and GW as well (Safavi and Esmikhani, 2013;
Singh, 2014b; Singh and Panda, 2013; Tabari and Soltani, 2012).
However, to avoid the tremendous computational cost, most of the
studies adopted hydrological simulation with no detailed discrip-
tion of SW–GW interactions. Some optimization studies involved
the 3-D groundwater flow model MODFLOW (Chang et al., 2010;
Harbaugh, 2005; Safavi and Esmikhani, 2013), but the groundwa-
ter recharge processes are highly simplified in MODFLOW. The
widely used SWAT model (Arnold et al., 2011) has also been applied
in SO studies on the conjunctive use issue (Cai et al., 2015), but
SWAT conceptualizes the groundwater system as water tanks, and
highly simplifies groundwater flow processes. In areas with strong
and complicated SW–GW interactions (e.g., groundwater discharge
into streams, riverbed leakage, groundwater exfiltration as springs,
groundwater recharge by irrigation water, etc.), physically based,
fully integrated SW–GW modeling is highly desired to appropri-
ately account for the critical processes. Neverthless, the complex
modeling has been rarely attempted within the SO framework.

Many integrated SW–GW models have been developed, such
as Hydrogeosphere (Brunner and Simmons, 2012), MIKE-SHE
(Graham and Refsgaard, 2001), ParFlow (Kollet and Maxwell, 2006),
CATHY (Weill et al., 2011) and GSFLOW (Markstrom et al., 2008;
Tian et al., 2015). These models can provide a comprehensive and
coherent understanding on the basin-scale water cycle. However,
incorporating such complex models in optimization remains as a
great challenge, because both gradient-based and heuristic opti-
mization algorithms would encounter difficulties in this case. In
gradient-based algorithms, like linear programming (e.g., Singh
and Panda, 2012), dynamic programming (Prasad et al., 2006),
and fuzzy dynamic programming (e.g., Zeng et al., 2010), calcu-
lation of derivatives is a key step. The integrated models represent
“black-box” functions whose derivatives cannot be analytically
determined, while finite-difference approximation of the deriva-
tives is laborious and may encounter the discontinuity problem.
On the other hand, heuristic algorithms, such as genetic algorithm
(GA) (Goldberg, 1989; Holland, 1975), particle swarm optimization
(PSO) (Clerc and Kennedy, 2002) and shuffled complex evolution
(SCE-UA) (Duan et al., 1992), require no derivative-calculation and
are more promising for finding global optima. But they usually
involve a very large number of iterations, and the optimization
would be extremely time-consuming with complex models. A
potential solution to this would be to employ surrogate modeling.

In general, surrogate modeling refers to replacing a complex
model with much simpler and computationally cheaper math-
ematical relationships in an iterative model evaluation process
(e.g., Monte Carlo Simulation, heuristic optimization, etc.). There
are two major types of surrogate modeling approaches. One is
response surface approaches aimed at finding a data-driven rela-
tionship between multiple explanatory variables and a model
output variable. This type of approaches have been increasing
used in optimization studies recently (Razavi et al., 2012). Rep-
resentative ones include Probabilistic Collocation Method (PCM)
(e.g., Zheng et al., 2011; Wu et al., 2014), Kriging (e.g., Baú and
Mayer, 2006), Support Vector Machine (SVM) (e.g., Cai et al., 2015)
and radial basis function (RBF) (e.g., Regis and Shoemaker, 2007).
There are two typical strategies to perform a surrogate-based opti-
mization using response surface. One is batch approaches (e.g.,
Johnson and Rogers, 2000; Liong et al., 2001; Cai et al., 2015)
which establish globally satisfactory response surfaces once for all,
using a very large training set. The other is adaptive approaches
which use a small training set to establish initial response surfaces
(usually unsatisfactory) and iteratively update them with addi-
tional training points (e.g., Forrester and Keane, 2009; Ostfeld and
Salomons, 2005; Regis and Shoemaker, 2007). DYCORS (DYnamic
COordinate search using Response Surface models) by Regis and
Shoemaker (2013) is a typical adaptive response surface approach.

The other type of surrogate modeling approaches is often referred
to as model reduction or reduced-order modelling (Castelletti et al.,
2012; McPhee and Yeh, 2008; Pasetto et al., 2011; Razavi et al.,
2012), which yields a low-order, physically based, dynamic surro-
gate model of the original complex model. This type of approaches
has also been adopted in optimization studies (e.g., Galelli et al.,
2010). Although different surrogate modeling approaches have
been employed for both surface water modeling (e.g., Ostfeld and
Salomons, 2005; Cai et al., 2015) and groundwater modeling (e.g.,
Johnson and Rogers, 2000; Mugunthan and Shoemaker, 2006), they
have been rarely used for fully integrated SW–GW modeling (Wu
et al., 2015).

This study investigated the human-nature water conflicts in
Heihe River Basin (HRB) in inland China. Farmlands in the middle
HRB divert a great amount of the river flow, significantly reducing
the water available to the lower HRB, a Gobi desert area with poor
vegetation. Before 2000, the ecosystem in the lower HRB had expe-
rienced a fast degradation, and the end lake of the Heihe River were
even dried out in certain years. A river flow regulation, starting
from 2000, has refrained the surface water diversion, but stimu-
lated groundwater pumping and caused a decline of the regional
groundwater storage. The water issues in HRB are typical of inland
river basins in the world. This study performed temporal optimiza-
tion for the conjunctive use of river flow and groundwater in the
Zhangye Basin (ZB), the core part of the middle HRB. GSFLOW and
DYCORS were used as the integrated SW–GW model and surrogate-
based optimization approach, respectively. The study objective was
to explore how integrated hydrological modeling and surrogate-
based optimization could benefit each other, and collaboratively
solve complex real-world problems. The study results can also
provide insights into the water resources management in HRB.

2. Data and method

2.1. The DYCORS algorithm

This study chose DYCORS (Regis and Shoemaker, 2009, 2013) as
the surrogate-based optimization approach. The surrogate model-
ing in DYCORS adopts radial basis functions (RBFs) as the response
surfaces. It has been demonstrated that, for optimization problems
involving a complex hydrological model, DYCORS can effectively
find optimal (or near-optimal) solution(s) with a reasonable com-
putational cost (Espinet et al., 2013; Li et al., 2015). The main
reason for using DYCORS in this study was two-fold. First, DYCORS
adaptively updates its response surfaces during the optimization
process. This is an innovative design which would substantially
enhance the algorithm’s searching efficiency. Second, the response
surface approach in DYCORS aims to emulate a specific aspect(s) of
the original model through a data training procedure, rather than to
replace the original model as a whole based on a model-reduction
analysis. This would offer great flexibility to the adaptive searching
in DYCORS.

Let y = f ( x) denote a computationally expensive function, which
incorporates a complex “black-box” model, to be minimized, where
x represents a vector of decision variables. Also, let g ( x) denote a
surrogate model for f (x). In general, DYCORS takes the following
steps:

i) Randomly sample n0 initial points of xi (i = 1, 2, . . ., n0) and com-
pute the corresponding objective value yi. Let denote the set
of the sampled points, and denotes the corresponding set of
objective function values. In this initial step, we have the iter-
ation number (denoted as I) equal to 1, = {x1, ...xn0 }, and
= {y1, ...yn0 }, and the cumulative number of objective function
evaluations (denoted as N) equals to n0. In the following steps,
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