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Multiple scales analysis of chirped Bragg gratings
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Abstract

In this paper, a second-order multiple scales expansion is used to derive coupled-mode equations for a linearly chirped
Bragg grating. This eliminates the error in the spectral response introduced by large values of the grating strength when
conventional first-order coupled-mode theory is used. The autonomous and nonautonomous formulations of these equations
are considered and compared in terms of accuracy and speed of the numerical solution of the resulting two-point boundary-
value problem for the reflectance of the grating. These solutions are compared with the characteristic matrix solution taken
as a reference. By using the fundamental matrix method, the autonomous formulation is found to be as accurate as the
characteristic matrix method but faster in terms of computer CPU time.
� 2009 Elsevier GmbH. All rights reserved.
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1. Introduction

Chirped Bragg gratings are good candidates for disper-
sion compensation in long-haul high-bit-rate optical fiber
links [1]. These devices could be operated either in re-
flection mode or in transmission mode. Transmission mode
compensators allow an all-fiber realization without need for
circulators, thus avoiding the insertion loss of reflection
mode compensators [2]. This is the main advantage of trans-
mission mode compensators over reflection mode compen-
sators. The latter have the advantages of larger bandwidth
because of the restriction on the maximum coupling coef-
ficient in the former so as not to produce overcoupling [3],
grating length that is smaller by an order of magnitude,
larger dispersion particularly when chirped, and in being less
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sensitive to environmental effects [4,5]. In addition, the re-
flection type can readily be deployed in existing networks at
receiving ends. There is some prospect for apodized Bragg
fiber transmission gratings [6] except that there are some
technological issues that need to be resolved before they can
be deployed commercially. High sensitivity to wavelength
drift, considerably large grating length, inability to bend or
spool, and the need to control temperature are some of these
issues.

In this paper, we study the influence of grating strength
and chirp parameter on chirped grating response by
using the method of multiple scales [7] and employ
the fundamental matrix method [8] to solve the re-
sulting coupled-mode equations numerically. Work on
apodized unchirped reflection gratings [9] using these
two methods showed that the coupled-amplitude equa-
tions of coupled-mode theory were insufficiently accurate
in predicting the spectral response, especially when the
strength of the periodic index perturbation (�) increases
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beyond � = 0.1. It was also shown that the perturbation
method of multiple scales when extended to second order
was capable of accurately predicting the response beyond
� = 0.2. As in [9], the results of the present approach are
compared with those obtained via the characteristic matrix
method [11] that is used to verify their accuracy. Both meth-
ods are in agreement especially when the periodic refrac-
tive index profile is divided into huge number of layers. As
stated in [9], the obvious advantage of the present approach
over the characteristic matrix method is its computational
speed. We experimented with the two different formulations
of the coupled-mode equations described by McCall [10]
and found that the autonomous formulation has the advan-
tage of being faster for the same accuracy.

The thrust of the present communication is not to report
on dispersion compensation but to present an appropriate
model of chirping in Bragg gratings. The performance of
these structures in pulse recompression has been considered
in [12].

2. Formulation and multiple scales analysis

We consider a chirped grating described by a refractive
index variation in the form

n(z) = na{1 + � sin[K z + �(z)]} (1)

where K is the wavenumber of the refractive index, � de-
notes the relative fluctuation amplitude of the refractive in-
dex around the average value na , and �(z) is a slowly varying
phase function describing a linear grating chirp. The prob-
lem is governed by Helmholtz’s equation for a z-directed
plane wave linearly polarized along the x-axis; i.e.,

∇2 Ex + k2
z Ex = 0 (2)

Here, kz is the wavenumber given by

kz = ka(1 + � sin(Knz + �(z))) (3)

where ka = (�/c)na is the average wavenumber in the grat-
ing. The problem is governed by the following boundary
conditions:

|Ex (z = 0)| = 1 (4)

and

Ex (z = L) = j�

��ns

�Ex

�z

∣∣∣∣
z=L

(5)

where ns is the index of refraction of the substrate at z = L ,
and � is the intrinsic wave impedance of free space.

Using the method of multiple scales, we expand Ex in
powers of � as follows:

Ex (z) = E (0)
x (z0, z1, z2) + �E (1)

x (z0, z1, z2)

+ �2 E (2)
x (z0, z1, z2) + · · · (6)

where z0 = z is a fast varying scale, while z1 = �z, and
z2=�2z are slowly varying independent scales. We may now
express the slowly varying phase function �(z) in the form

�(z1) = F ·
(

z1 − L/2

L

)2

(7)

where F is a dimensionless chirp parameter, and L repre-
sents the grating length measured in units of the scale z1.
Substituting the above expansion for Ex into Helmholtz’s
equation and the boundary conditions, and equating coeffi-
cients of equal powers of � on each side, we obtain

O(1):

�2 E (0)
x

�z2
0

+ k2
a E (0)

x = 0 (8a)

|E (0)
x (0)| = 1 (8b)
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(9a)

|E (1)
x (0)| = 0 (9b)
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x (10)

3. Derivation of coupled-mode equations

In the solution of the reduced problem, two slowly varying
functions representing the amplitudes of the incident and
reflected waves appear. Denoting the incident and reflected
amplitudes, respectively, by A(z1, z2) and B(z1, z2), we may
write this solution in the form

E (0)
x (z0, z1, z2) = A(z1, z2)e− jka z0 + B(z1, z2)e jka z0 (11)

Substituting this solution into the equations governing the
O(�) problem and using the Bragg condition

2ka − K = �� (12)

where � is a detuning parameter measuring the nearness to
resonance, secular-producing terms appear in the inhomo-
geneous parts. The condition for the elimination of secular
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