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a  b  s  t  r  a  c  t

In on-demand  irrigation  systems,  canal  operators  divert  water  from  rivers  to  be delivered  to  the  fields
after receiving  a  water  order  from  a farmer.  These  water  orders  are  the result  of  a  farmer’s  decision
to  irrigate.  If farmers’  irrigation  decisions  could  be  better  anticipated,  it might  be possible  to improve
canal  operations  using  improved  future  short-term  water  demand  estimates.  The  importance  of  how
farmers  make  these  irrigation  decisions,  however,  is  often  overlooked  because  of  their  high variability  and
unpredictable  nature.  A  hidden  Markov  model  (HMM)  was  built  to analyze  irrigation  decision  behavior  of
farmers  and  make  forecasts  of  their  future  decisions.  The  model  inputs  were  relatively  easily  measured,
or  estimated,  biophysical  data,  including  such  factors  (i.e., those  variables  which  are  believed  to affect
irrigation  decision-making)  as  cumulative  evapotranspiration,  depletion,  soil  stress  coefficient,  and  canal
flows. Irrigation  decision  series  were  the  hidden  states  for the model.  The  paper  evaluates  data  from  the
Canal  B region  of  the  Lower  Sevier  River  Basin,  near  Delta,  Utah.  The  main  crops  of the  region  are  alfalfa,
barley,  and  corn.  A  portion  of  the  data  was  used  to  build  and  test  the model  capability  to explore  that
factor  and  the level  at  which  the  farmer  takes  the  decision  to irrigate  for future  irrigation  events.  It was
found  that  the farmers  cannot  be  classified  into  certain  classes  based  on their  irrigation  decisions,  but
varies  in  their  behavior  from  irrigation-to-irrigation  across  all years  and  crops.  The  factors  and  the  level
selected  can  be  adequately  used  to explore  the  future  irrigation  decisions  in  the  short  term.  HMMs  can  be
used  as a tool  to  analyze  what  factor  and,  subsequently,  what level  of that  factor  the  farmer  most  likely
based  the  irrigation  decision  on.  This  was  possible  only  when  the  maximum  likelihood  (ML)  estimates
of  model  parameters  were  known  based  on  the  historical  evidence.  The  study  shows  that  the  HMM  is a
capable  tool  to  study  irrigation  behavior  which  is  not  a  memory-less  process.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Operators of on-demand irrigation canal systems can benefit
from better methods to predict short-term irrigation demands.
Such predictions could be used to improve the efficiency of sys-
tem operation and could become vital information for the canal
operators. Given that farmer irrigation decisions initiate the diver-
sions in the first place, accurate forecasts of farmer irrigation
decisions might provide the key to forecast these short-term
demands.

Practically, we do not know much about the thought processes
involved in farmers’ irrigation decisions. Farmers’ decisions are
varied from farmer to farmer, from crop to crop, and from year
to year, and presumably depend on a wide array of factors such
as weather, market prices, water remaining in their share for the
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season, the crop stress indicators, etc. These factors cannot all be
directly measured and there is minimal understanding of how
farmers take them into consideration in making their irrigation
decisions.

On-demand surface irrigation is practiced in the study site
selected for this work. Real-time monitoring of reservoir releases
and canal diversions, and reliable forecasts of evapotranspiration
(ET) are other data readily available to both system operators and
farmers, alike. Agricultural water use in the area can be stud-
ied by using real-time soil moisture measurements for which soil
moisture probes are installed on some fields. However, day-to-
day irrigation demands of the area are still difficult to forecast.
A reliable method to predict farmer irrigation decisions might
provide a means to improve forecasts of short-term irrigation
demand.

Irrigation decision behavior is complicated because every
farmer is different in his approach toward crops. Some farmers aim
for good crop quality, while others use water sparingly by using
information about soil moisture, yet others may irrigate as soon as

http://dx.doi.org/10.1016/j.agwat.2014.06.010
0378-3774/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.agwat.2014.06.010
http://www.sciencedirect.com/science/journal/03783774
http://www.elsevier.com/locate/agwat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agwat.2014.06.010&domain=pdf
mailto:s.andriyas@aggiemail.usu.edu
dx.doi.org/10.1016/j.agwat.2014.06.010


S. Andriyas, M. McKee / Agricultural Water Management 143 (2014) 48–58 49

they see some stress in the plants. As a result, there can be sev-
eral farmer paradigms, making the forecasting problem even more
complex.

Since farmer decision behavior is unlikely to depend on one
factor, we can roughly define it as a multivariate process. There
are some factors in the system which are likely to influence a
farmer’s decisions and which are indirectly affected by his behav-
ior. For example, the soil moisture content generally decreases
through time because of evapotranspiration (ET), but it is the farmer
who chooses to replenish the soil reservoir through irrigation.
Interaction between factors can decrease the significance of impor-
tant/main factors in such a dynamic system. This makes a case for
studying the factors in isolation to discover that important variable
which can best represent behavior. This problem can be thought of
as randomly observed data whose values are dependent on some
unobserved or hidden random states.

A Markov model is a tool to estimate the unseen states which
the system passed through to produce the observations that have
been made available through some measurement mechanism. Even
simpler are the HMMs  which have been used to study speech recog-
nition (Rabiner, 1989), and weather states (Hughes and Guttorp,
1994; Hughes et al., 1999; Zucchini & Guttorp, 1991). HMMs  are
first order Markov models. The literature documenting the appli-
cation of HMMs  to human subjects is limited. Jeong et al. (2008)
in their psychological study found patterns in students’ learning
activities while interacting with a computer, which can be a char-
acteristic of their behavior.

Farmer behavior has been simulated in some studies. Becu et al.
(2006) built a multi-agent system to study water sharing between
two villages located at the extreme ends of a watershed. The
basis on which the farmers make irrigation decisions was studied.
This included cropping practices and irrigation strategies. Farmers
groups were identified by studying their cropping patterns. Once
the crop grown by the farmer was decided, irrigation decisions
were simulated accordingly. This study provided solutions to the
villages to avoid water scarcity. Le Bars et al. (2005) also modeled a
multi-agent system to simulate agent-farmers who  made irrigation
decisions under conditions of limited water supply. Farmers had
water quotas, against which they placed water orders in the begin-
ning of the irrigation season. The quotas depend on the crop and
farm size. A water manager agent managed the water using allo-
cation rules. Random climate variables were assumed. Bontemps
and Couture (2002) created a sequential decision model to sim-
ulate farmer decision making when they paid a minimal amount
for ordering water. The water itself was supplied for free. These
few studies do not analyze existing farmer decision behavior but,
instead, try to recreate farmer actions that have been observed
under different scenarios.

Modeling farmer irrigation decision behavior and forecasting
future decisions can help improve canal operations. This type
of modeling can be useful in estimating short-term irrigation
demands and prepare the canal operators for anticipated water
demands as the season goes along. This work is a first attempt
of studying farmer decision behavior using HMMs.  We  have tried
to use measurable biophysical variables that reflect the results of
irrigation decision behavior to deduce information about variables
that are important from the decision-making perspective. A hid-
den Markov modeling framework has been used for the problem,
and information about biophysical data and related decisions have
been used from Canal B command area in Sevier River Basin, Utah.

2. Hidden Markov models

The very well-known first-order hidden Markov model (HMM)
is specifically a simple probability model and can be represented

Fig. 1. Graphical representation of a hidden Markov process where X is the observed
variable and S is the unobserved hidden state.

graphically as shown in Fig. 1. If a simple system that is evolving
over discrete time steps is described by observed variables Xt, which
are related to an unobserved hidden state, St, then such a system
follows a hidden Markov process (Rabiner, 1989). The parameters
defining such a process are called a hidden Markov model (HMM).
Our problem is a “decoding” type problem wherein HMMs  are used
to find the most probable sequence of hidden states. This is done
here with the Viterbi Algorithm. This and other HMM  algorithms
are discussed in Rabiner (1989).

2.1. The Viterbi algorithm

The Viterbi algorithm, initially given by Forney (1973), assumes
an initial HMM  for an observation sequence, and determines one
single “most likely sequence” of underlying hidden states that
might have generated the sequence.

A HMM,  represented as M = (A, B, �), is specified by the following
probabilities (Rabiner, 1989):

1. A vector of initial state probabilities, � = �i.
2. A matrix of transition probabilities, A = aij, where, aij = P(si|sj) and

P(si|sj) is the conditional distribution of the present state, si, given
the previous state, sj.

3. A matrix of emission/observation probabilities, B = bi(vm), where,
bi(vm) = P(vm |si) and P(vm |si) is the conditional distribution of vm

given the hidden state, si.

The observation sequence, O = o1 o2 · · · ok is given. We  have
to find the state sequence, Q = q1 · · · qk, which maximizes P(Q |
o1o2· · ·ok). To find the most probable sequence of hidden states, we
list all possible sequences of hidden states and find the probability
of the observed sequence for each of the combinations. Out of all the
combinations, the most probable sequence of hidden states is one
that maximizes P (observed sequence|hidden state combination).

The maximum probability is:

ık(i) = max(P(q1· · ·qk−1, qk = si, o1o2· · ·ok))

and produces observation sequence o1o2o3· · ·ok while walking
through any hidden state sequence q1· · ·qk−1 and getting to qk = si.
In other words, if the best path ending in the present state, qk = si,
passes through the previous state, qk−1 = sj, then it should coincide
with best path ending in the previous state, qk−1 = sj. The procedure
for finding the best state sequence is as follows (Rabiner, 1989):
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