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a b s t r a c t

Power allocation to satisfy user demands, in the presence of large number of interferers (in a multicellular
network), is a challenging task. Further, the power to be allocated depends upon the system architecture,
for example upon components like coding, modulation, transmit precoder, rate allocation algorithms,
available knowledge of the interfering channels, etc. This calls for an algorithm via which each base sta-
tion in the network can simultaneously allocate power to their respective users so as to meet their
demands (whenever they are within the achievable limits), using whatever information is available of
the other users. The goal of our research is to propose one such algorithm which in fact is universal:
the proposed algorithm works from a fully co-operative setting to almost no co-operation and or for
any configuration of modulation, rate allocation, etc. schemes. The algorithm asymptotically satisfies
the user demands, running simultaneously and independently within a given total power budget at each
base station. Further, it requires minimal information to achieve this: every base station needs to know
its own users demands, its total power constraint and the transmission rates allocated to its users in
every time slot. We formulate the power allocation problem in a system specific game theoretic setting,
define system specific capacity region and analyze the proposed algorithm using ordinary differential
equation (ODE) framework. Simulations further confirm the effectiveness of the proposed algorithm.
We also demonstrate the tracking abilities of the algorithm.

In heterogeneous networks, it is hard to expect the various agents to update their algorithms in a syn-
chronous manner. Using two time scale stochastic approximation analysis we study the proposed algo-
rithm operating in a simple example scenario, wherein the heterogeneous agents update (their power
profiles) at different speeds.

Further, backed by numerical examples (for various generic example scenarios), we show that the algo-
rithm converges to the same power profile, as long as the demands remain same, irrespective of the dis-
parities in the operating speeds at different agents.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Multi-input multi-output (MIMO) combined with network den-
sification promise improved network coverage and capacity for
mobile broadband access. But, due to an increased number of
transmit antennas and or the proximity of base stations (BS), users
at cell edges experience a higher degree of interference from neigh-
boring base stations.

Network MIMO or other forms of BS co-operation enable shar-
ing complete or statistical knowledge of channel states (CS)
amongst neighbors via back-haul links to alleviate interference
and offer better rates to users. When back-haul is not available,
each BS may estimate the local channel state information and
use the same for better performance. In some cases, a low rate
feedback from the receiver indicating the QoS of the current trans-
missions is utilized, while in the worst case the transceivers are de-
signed with no CS information. Thus we have a variety of systems
with varying degrees of the information about the interfering
channels. However the goal in each is the same: satisfy the de-
mands of all the users. We may require higher power profiles to
satisfy the same demands when working with lesser information.
Further diverse situations can arise because of the system
configuration like modulation, precoding, channel coding, resource
allocation etc.
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For a given vector of power constraints at various base stations,
Shannon capacity gives the maximum achievable rate, i.e., the
capacity region. This is an upper bound. We define ‘‘system specific
capacity region’’ (achievable rate region of a given system) which
depend on coding (space–time, channel), modulation, channel
state information availability, synchronization, feedback errors
and many other things. Given a system architecture with a chosen
set of parameters which define its rate allocation, modulation, etc.,
the achievable rates are usually inferior to the theoretical rates and
the system specific capacity region is defined based on these rates.
The system-specific capacity region for the same power constraint
varies: for example it shrinks if the number of supported discrete
rates reduce. Thus, the power allocated to any user to achieve
the same demand rate varies with the set of system parameters.

The main contribution of this paper is a universal algorithm
which can work with many of the systems mentioned above. It sat-
isfies asymptotically the demands of all the users irrespective of
the system in which it is operating, albeit with different power
profiles. Each base station requires minimal information: its user’s de-
mands, its total power constraint and the current transmission rates to
its users. The amount of data information transmitted successfully
in a slot (per slot) basically represents the current transmission
rates. These current transmission rates are decided by the serving
base stations either using complete CSIT (algorithm can also be
used as a centralized scheme in this case) or has to be estimated
completely blindly or using some partial information. These are
also influenced by the underlying channel.

In cellular networks, the scenarios can change with time. For
example a base station can become active suddenly, the demands
may change etc. We demonstrate via simulations that the pro-
posed algorithms can also track the changes.

In heterogeneous networks, various agents (for example macro
cells and micro cells) can operate at different speeds. However they
still can interfere with each other. We consider a simple example
scenario and demonstrate using the two time scale stochastic
approximation analysis that the proposed algorithm converges to
the same power profile irrespective of the disparities in the update
rates. We then illustrate the same for general scenarios using
numerical simulations. The following are the contributions of this
paper:

(1) A system specific game theoretic problem formulation using
the system specific capacity region.

(2) A Stochastic Approximation based universal power allocation
algorithm in an interference limited multi-cell network.

(3) Various properties (e.g. convergence) of the proposed algo-
rithm is analyzed using an ODE framework.

(4) Simulation results demonstrate the effectiveness of the pro-
posed algorithm for a variety of systems.

(5) We also establish the tracking capabilities of the algorithm.
(6) We illustrate the robustness of the proposed algorithm

against the disparities in update rates at various agents.

1.1. Related work

For an excellent survey on power control in wireless networks,
the reader is referred to [2] and the references there-in (e.g. [3,5–
8]). In recent years, several authors have addressed distributed
power control strategies with various levels of co-operation for a
given system configuration (e.g. [3,5–7,10] etc). Typically, the de-
sign objective is to maximize the total sum rate of all the users sub-
ject to BS power constraints or to minimize the total transmit
power satisfying some SINR constraints of the users.

Most of the existing algorithms aim at either optimizing the to-
tal power spent keeping the QoS above a required level (e.g. [5–7]
etc.) and or optimize the QoS while keeping the power utilized

within a given budget (e.g. [10]). But our algorithm does not opti-
mize, it only meets the demands (in the form of average transmis-
sion rates) on average asymptotically.1 This relaxation helps us in
proposing an algorithm that requires minimal information (hence
has minimal complexity) at the transmitters: rates at which the
information is correctly transmitted to the user in every slot. Data
is pumped out from the transmitter and hence these rates are readily
known to the transmitter. Hence this algorithm does not require any
extra information and this can be exploited in many more ways. For
example, one can probably use this algorithm in networks with het-
erogeneous cells, i.e., when each cell has a system configuration that
can be different from the other cells.

A related concept, called satisfying equilibrium, is defined and
studied in a recent paper ([9]). Here they define the satisfying equi-
librium as any profile at which the QoS of all the users is either bet-
ter or the same as the specified level. Basically, the set of satisfying
equilibrium represents the domain of optimization for the prob-
lems that optimize the total power utilized while maintaining
the QoS. In our paper, we propose an algorithm that satisfies the
demands for all the users at exactly the specified level via a sto-
chastic approximation based zero finding method. As already dis-
cussed, this zero finding method greatly simplifies the algorithm.
To the best of our knowledge this is the first paper that proposes
to take advantage of the relaxation obtained by avoiding the
optimization.

1.2. Organization

We introduce the system model in Section 2. In Section 3, we
describe the system specific problem formulation. The algorithm
and its analysis is presented in Section 4. Section 5 provides simu-
lations. Section 6 discusses heterogeneous agents. Appendix con-
tains example systems and proofs.

1.3. Notations

Boldface lower-case symbols represent vectors, capital boldface
symbols denote matrices (IN is the N � N identity matrix). Hermi-
tian transpose is denoted ð�ÞH while tr½X� represents the trace of
matrix X. All logarithms are base-2 logarithms. Small letters repre-
sent the scalars. Let ak represent the kth component of the vector a.
If the vector is already indexed like for example in pj, then pk;j rep-
resents its kth component. Let ðp:sÞ represent the component-wise
product, i.e., ðp:sÞk ¼ pksk for all k while

ffiffiffi
p
p

represents component
wise square root. E½�� denotes expectation and Es is expectation
w.r.t to s when conditioned (if any) on the other random variables.

2. System model

We consider a multi-cell MIMO system. Each base station has M
transmit antennas and is communicating with K single-antenna
users (see Fig. 1). Every user experiences both intra-cell (transmis-
sions from parent BS) and inter-cell (transmissions from neighbor-
ing BS) interference. Each user in a cell demands a certain rate and
all these rates have to be jointly satisfied by the BS (present in the
cell) while operating within a total power constraint.

Let Hj;l represent the K �M channel matrix, when the users in
cell j receive signals from the BS of cell l and let its elements be gi-
ven by zero-mean unit-variance i.i.d. complex Gaussian entries. Let
nj represent the additive white Gaussian noise at the receivers of

1 We show the demand meeting power profile to be a NE of a ‘leaky’ game. We call
this game ‘leaky’, because the utility of the game is upper bounded by the demands
(see Definition 5, Section 3.1). In summary our aim is to provide a channel, to each
one of the users, whose (system specific) capacity is more than or equal to the user’s
demand.
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