
Application of the relevance vector machine to canal flow prediction
in the Sevier River Basin

John Flake a, Todd K. Moon a,*, Mac McKee b, Jacob H. Gunther a

a Department of Electrical and Computer Engineering, Utah State University, 4120 Old Main Hill, Logan, UT 84322, USA
b Utah Water Research Laboratory, Utah State University, Logan, UT 84321, USA

1. Introduction and background

One of the biggest challenges in areas with limited water is
getting the necessary amounts of water to the desired places at the
appropriate times, with the ever-present objective of providing the
water with minimal loss in transmission and minimal excess.
Meeting this challenge is problematic when, as is often the case,
the amounts of water needed, the locations and times of need, and
the losses that will occur are not precisely known at the time when
water management and diversion decisions are made. One
important area of focus, then, is the development of models for
predicting water demand. Such has become a focus for research on
the Sevier River Basin.

The Sevier River Basin is a closed river basin in south central
Utah covering approximately 12.5% of the state’s area. Due to
the arid climate of the region, irrigation is essential to crop
growth. Various efforts have been used to improve water
management in the Sevier River Basin. A system of reservoirs
and canals has been developed to manage the water needs in the
basin (Berger et al., 2003). More recently, in an attempt to
improve water management practices in the basin, the canal
system has been heavily instrumented for measurement and
control purposes (Berger et al., 2001). The instrumentation
system includes measurement devices as well as communica-

tion hardware and software which collect hourly data for many
points in the basin and log this data in a publicly accessible
Internet database. Measurements include water levels and flow
rates as well as several weather indices collected at weather
stations in the basin. This automated data collection has been
ongoing since the year 2000, so that there are now several years
of data for many measurement points within the basin (SRWUA,
2000). These data have been used mainly for monitoring
purposes, until recently, when some work has been done with
statistical learning machines to predict reservoir releases (Khalil
et al., 2005). Meeting with some success, this work has
prompted further interest in investigations of potential
improvements to water management that may come as a result
of an increased ability to predict water demands in the basin.

Many challenges confront the water users in the Sevier River
Basin. Depending on their location in the basin, farmers must place
water orders as many as 5 days in advance of the time they can
expect to receive it. A large portion of available water is lost in
transmission from reservoir to field. The mechanism for water
delivery is relatively inflexible: delivery times are rigid and order
cancellation is generally not an option.

The work of this paper is the investigation and development of
canal flow prediction capability in the Sevier River Basin with
relevance vector machine (RVM) models trained using the existing
database of canal measurements. The methods and tools used for
prediction in the Sevier River Basin are expected to have
application to other regions where water is in high demand. This
work differs from the previous work (Khalil et al., 2005), since this
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deals with prediction of water delivered to the farmers, while the
previous work deals with prediction of reservoir releases.

At present, canal operators make flow decisions based on
farmer orders, transmission loss rates, canal limitations and
experience. To provide for the water needs of the farmers,
operators are dependent on the receipt of water orders. When
setting the flow to meet current orders the canal operator has little
knowledge of future orders or the future flow. More knowledge of
future orders would enable improvements to water management.
However, predictions must rely on data that are consistently and
readily available, particularly for a system that intends to provide
automated predictions at regular time steps. The primary source
for consistent data in the basin is the aforementioned database
where data are limited to reservoir levels, canal flow rates, and
weather data (temperature, humidity, solar radiation, wind speed,
and precipitation). Since other data – such as crop type and acreage
– are not readily available, a physical model is problematic.
Instead, a data-driven model is considered here.

We seek a functional relationship between a set of inputs and an
output, where the output is the item we desire to predict. While we
have spoken of water orders as the quantity we would like to predict,
unfortunately, order information is not included in the database, nor
are they readily available otherwise. Instead we will choose the
canal flow itself as the item of prediction. This choice fills the same
role as water orders and is arguably a better choice. We justify this as
follows: in setting canal flow, individual farmer orders are combined
additively to form a total water order. Expected water loss is
accounted for with a multiplicative factor. Some modifications are
likely made by the canal operator based on his strategies for
respecting canal limitations, maintenance needs, and other objec-
tives. These result in a quantity that can be thought of as the
intended canal flow. The actual canal flow differs from this intended
flow only by limitations in the precision of the operator at meeting
his intentions. Such control limitations are a matter of the tools at the
disposal of the operator for setting canal flow; they can be modeled
as noise. Finally, the measured canal flow – which is the data item
available in the database – is the actual canal flow with noise
introduced through measurement. The measured canal flow, then, is
the inclusion of control and measurement noise on a flow that is
intended to meet the water orders given by the farmers. For
purposes of setting canal flow we can predict this intended flow
directly, which is equivalent to predicting water orders and then
determining the intended flow from the orders. The direct approach
eliminates computations while suiting itself to the available data.

Intended flow, which we will hereafter call demand, is directly
related to the water orders placed by farmers and is generated to
match those orders by taking into account the losses associated
with transmission while remaining within the bounds of operation
for the canal. The type of inputs that would be used to predict
farmers’ orders are generally the same inputs that will be effective
in predicting demand.

We choose the RVM as our tool for prediction. The RVM is a
learning machine with a model function formed as a linear
combination of data-centered basis functions. It yields equivalent
and often superior results to other kernel-based learning machines
both in terms of generalization ability and model sparseness.
Having chosen the RVM and given the data items available in the
database, forming a model for prediction is a matter of
experimenting with the choice of inputs to find the set of inputs
that produce a model with the lowest prediction error.

2. Predictive function estimation and the relevance vector
machine

In this section we very briefly introduce the relevance vector
machine to establish some notation and concepts for following

discourse. A considerably more complete discussion and deriva-
tion of the results appears in Flake (2007); the relevance vector
machine appears initially in Tipping (2001).

Prediction is the deduction or estimation of a system condition
based on some functional or intuitive relationship between that
condition and other conditions in the system. The task of machine
learning is to determine or estimate this functional relationship
between the desired condition and other conditions in the system
from a set of paired examples or observations of the same. In other
words, if we call the value of the desired condition a target, and
denote it tn, and call the vector value of the system conditions that
yield the target an input, and label it xn, then the task of machine
learning is to estimate the functional relationship that relates
inputs xn to their associated targets tn using a finite set of examples
of the same, ftn;xngN

n¼1, hereafter referred to as the training data.
For the problem at hand, our purpose is to find good values for

the model weights that will generalize to unseen data so
predictions can be performed. Each target is modeled as the
function on the corresponding input with additive white Gaussian
noise to accommodate measurement error on the target:

tn ¼ yðxn;wÞ þ en: (1)

With this formulation – given that we know yðxnÞ – each target is
independently distributed as Gaussian with mean yðxnÞ, and
variance s2 equal to that of the noise process:

pðtnjyðxnÞ;s2Þ�N ðtnjyðxnÞ;s2Þ: (2)

A widely used approach to machine learning is to employ models
of the form:

yðx;wÞ ¼
XN

i¼1

wiKðx;xiÞ þw0: (3)

In this formulation, the vector x is an input vector (consisting of
potentially many elements) and the value yðx;wÞ is the corre-
sponding output value. The function Kðx;xiÞ is referred to as a
kernel function. The kernel used in our experiments is the Gaussian
kernel of form Kðx;xnÞ ¼ exp f�hkx� xnk2g with scale parameter
h, where (unless otherwise indicated) we take h ¼ 1.

Roughly speaking, the vector of weights w can be selected by
training so that across a given set of training data, the likelihood
function (2) is maximized. However, this direct approach tends to
overfit to the training data, so that generalization to new
observations is poor. To avoid this, the training also employs a
prior distribution on the weights (Flake, 2007; Tipping, 2001),
specifically designed to favor small, potentially zero-valued
weights, since zero-valued weights effectively remove the
corresponding basis functions from the model, leaving only those
basis kernel functions that are ‘‘relevant’’ training vectors. This
gives rise to the term ‘‘relevance vector machine.’’ Models such as
these having many zero-valued weights (termed ‘‘sparse’’) tend to
have better generalizing performance.

In our experiments below, the model (3) is compared against
the linear multiple-regression (MR) model:

yðx; aÞ ¼
XP

i¼1

aixi ¼ aTx:

Again we model training targets as the function on the training
input with additive noise. Stacking for all training vectors and
constraining the error and data to be orthogonal leads to the set of
normal equations:

a ¼ R�1p;

where R is the Grammian matrix and p is the correlation vector
(Moon and Stirling, 2000).
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