
Harnessing cross-layer-design

Ismet Aktas ⇑, Muhammad Hamad Alizai, Florian Schmidt, Hanno Wirtz, Klaus Wehrle
Communication and Distributed Systems (ComSys), RWTH Aachen University, Germany

a r t i c l e i n f o

Article history:
Received 11 April 2013
Received in revised form 7 August 2013
Accepted 20 September 2013
Available online 29 September 2013

Keywords:
Cross-layer design
Cross-layer conflict detection
Software architecture
Runtime adaptive systems
Cross-layer interactions

a b s t r a c t

Applications and protocols for wireless and mobile systems have to deal with volatile envi-
ronmental conditions such as interference, packet loss, and mobility. Utilizing cross-layer
information from other protocols and system components such as sensors can improve
their performance and responsiveness. However, application and protocol developers lack
a convenient way of specifying, monitoring, and experimenting with optimizations to eval-
uate their cross-layer ideas.

We present CRAWLER, a novel experimentation architecture for system monitoring and
cross-layer-coordination that facilitates evaluation of applications and wireless protocols.
It alleviates the problem of complicated access to relevant system information by providing
a unified interface to application, protocol and system information. The versatile design of
this interface further enables a convenient and declarative way to specify and experiment
with compositions of cross-layer optimizations and their adaptions at runtime. CRAWLER also
provides the necessary support to detect cross-layer conflicts, and hence prevents perfor-
mance degradation when multiple optimizations are enabled across the protocol stack. We
demonstrate the usability of CRAWLER for system monitoring and cross-layer optimizations
with three use cases from different areas of wireless networking.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Developing real-world protocols and applications for
wireless and mobile systems is difficult. The volatile nature
of the wireless medium as well as network and channel
dynamics induced by mobility complicate their compre-
hensive development. This is further aggravated by the iso-
lated nature of today’s applications, protocols, and the
operating system. Although the isolation of applications
from each other, protocols, and the operating system at-
tains reasonable software engineering advantages, it disre-
gards (i) access to relevant system information, such as
protocol states, for monitoring and experimentation and
(ii) coordination among different components to optimize
the performance in the face of changing conditions or
mobility effects.

In order to achieve in vivo access to such relevant sys-
tem information, network analysis tools, such as wireshark
[1], allow the inspection of traffic specific points in the pro-
tocol stack. However, such tools lack the ability to monitor
protocol states, variables, and system components, e.g.,
battery, motion indicators, and CPU utilization. This is
mainly because the protocol stack and system component
drivers are deeply integrated into the operating system
which strongly limits external access to their internal
states. Therefore, application and system developers are
unable to access vital system information for monitoring,
experimentation and performance optimization.

However, breaking this isolated layer and application
paradigm, recent research [2] has shown cross-layer infor-
mation, i.e., information provided also over non-adjacent
layers, to allow both diverse applications and protocols to
be significantly more adaptive. For example, in mobile
and wireless systems, even a single cross-layer optimiza-
tion at the MAC layer can achieve TCP throughput

1570-8705/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.adhoc.2013.09.003

⇑ Corresponding author. Tel.: +49 241 80 21418.
E-mail address: Aktas@comsys.rwth-aachen.de (I. Aktas).

Ad Hoc Networks 13 (2014) 444–461

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier .com/locate /adhoc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2013.09.003&domain=pdf
http://dx.doi.org/10.1016/j.adhoc.2013.09.003
mailto:Aktas@comsys.rwth-aachen.de
http://dx.doi.org/10.1016/j.adhoc.2013.09.003
http://www.sciencedirect.com/science/journal/15708705
http://www.elsevier.com/locate/adhoc


speedups of up to 20 times and latency reduction of up to
10 times over unmodified systems [3]. However, despite its
proven potential to enhance system performance and a fair
share of research investment in recent years, the cross-
layer paradigm has not been able to leverage its utility
beyond few promising yet concentrated research efforts
[4–8].

Although several static cross-layer architectures have
been proposed, networking researchers and application
developers lack a generic and flexible architecture that en-
ables specification and experimentation with cross-layer
optimizations. Specifically, existing static cross-layer archi-
tectures [5,9–11] facilitate manipulation of protocol-stack
parameters and combine several dedicated cross-layer
optimizations. However, in current architectures of this
type, cross-layer optimizations are composed offline (i.e.,
at compile time) and are deeply embedded within the
operating system (OS). This approach has three key limita-
tions that motivate the ideas presented in this article.

First, the process of adding or removing an optimization
is impractical: optimizations are hard-wired with the
architecture, and because the architecture is deeply
embedded into the OS, recompiling the kernel and reboot-
ing the system are typical consequences when changing
optimizations. Furthermore, the developer has to deal with
too many system internals such as OS programming lan-
guage, application programming interfaces (APIs) and
primitives before actually experimenting with cross-layer
optimizations.

Second, because of this static nature of the existing
architectures, an optimization will change the system
behavior even if it is not needed or intended to take effect.
Precisely, an optimization that is specific to an application
or environment is not required when that application is
not running or the underlying conditions have changed.
For example, energy saving optimizations may not be nec-
essary if the device is plugged into a power supply. There-
fore, this optimization and its interaction with the network
stack is superfluous and may even adversely affect other
active applications. We strongly believe that this is against
the original spirits of the cross-layer paradigm [12] which
emphasize the need for dynamic adaptation of the system
behavior (i.e., protocols, system components, and applica-
tions) based on the current application requirements and
the network conditions.

Third, compile-time installation of optimizations signif-
icantly complicates the detection of cross-layer conflicts,
i.e., possible performance degradations [13] caused by
multiple, contradicting optimizations. Detecting such con-
flicts thereby remains one of the major unresolved chal-
lenges in the cross-layer development domain [4,8,13].

In this article we present CRAWLER, a novel experimenta-
tion architecture for system monitoring and cross-layer-
coordination that facilitates the evaluation of applications
and wireless network protocols. CRAWLER thereby benefits
developers of wireless and mobile applications, protocols,
and systems and supports them in experimenting with
and evaluating their cross-layering ideas. Specifically,
CRAWLER provides the following key features that illustrate
its departure from the existing work and mark the contri-
butions of this article.

� CRAWLER simplifies the process of monitoring and exper-
imentation by providing a unified interface for access-
ing application, protocol, and system information,
independent from the OS internals.
� The generic, versatile design of this interface further

facilitates specifying cross-layer optimizations by pro-
viding a declarative way of composing a set of optimiza-
tions and their adaption and adaptability at runtime.
� It offers (i) a very high degree of flexibility, to fluently

experiment with changing compositions of cross-layer
optimizations and (ii) extensibility, to include and
remove heterogeneous protocol and system compo-
nents in order to find the right set of optimizations for
a certain use-case. Hence, CRAWLER is well suited as a
rapid prototyping tool for application and system
developers.
� It enables cross-layer conflict detection support to pro-

vide feedback to the developers regarding conflicting
interdependencies when experimenting with multiple,
concurrent cross-layer optimizations.

The remainder of this article is organized as follows.
Section 2 presents a system overview, highlights our de-
sign goals, and comprehends the scope of our architecture.
Based on our design goals, Section 3 describes our architec-
ture from a conceptual point of view. The practical value of
CRAWLER is demonstrated in Section 4 where three different
use cases from divers networking fields are presented. In
Section 5 we show how CRAWLER supports a developer to de-
tect conflicting interdependencies between multiple cross-
layer optimizations. The implementation details and the
architectural overhead of CRAWLER are presented in Section 6.
Finally, we discuss related work in Section 7 before con-
cluding the article in Section 8.

2. Design overview

CRAWLER consists of two main components as shown in
Fig. 1: the logical component (LC) allows cross-layer devel-
opers to express their monitoring and optimization needs
in an abstract and declarative way. For this purpose, we
have created a rule-based language customized to cross-
layer design purposes. Using this language, developers
can specify cross-layer signaling at a high level without
needing to care about implementation details. Addition-
ally, the LC offers a uniform interface that allows applica-
tions (i) to provide their own optimizations on demand
and (ii) exchange information with the protocol stack, sys-
tem components and other applications.

The cross-layer optimizations as specified in the LC are
realized by the cross-layer processing component (CPC).
Here, rules are mapped to compositions of self-written
functional units (FUs). Finally, stubs provide read/write ac-
cess to protocol information and sub-system states via a
generic interface that abstracts from a specific implemen-
tation. Thus, additions and changes in optimization rules
can be done at runtime using the LC. These changes are re-
ported to the CPC, which adapts the FU compositions
accordingly.

I. Aktas et al. / Ad Hoc Networks 13 (2014) 444–461 445



Download English Version:

https://daneshyari.com/en/article/448024

Download Persian Version:

https://daneshyari.com/article/448024

Daneshyari.com

https://daneshyari.com/en/article/448024
https://daneshyari.com/article/448024
https://daneshyari.com

