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Various digital soil mapping techniques ranging from simple linear models to complex machine learning tech-
niques have been employed for soil organic carbon (SOC)mapping.When SOCmapping over a large region is re-
quired, the usual approach has to employ amodel calibrated for thewhole area. An alternative is to use a series of
locally calibratedmodels to map smaller areas that collectively cover the large region of interest. The accuracy of
the SOC products generated by these two approaches can potentially vary. However, performance of whole-area
calibratedmodels versus locally calibrated models in mapping SOC of large extents has seldom been explored in
detail, particularlywith respect to the type ofmodel being employed. Our study aims to fill this gap by evaluating
the SOC prediction performance of three common models, multiple linear regression (MLR), Regression tree
model; Cubist and Support Vector Regression (SVR) that are calibrated locally and for the whole study area.
This study was carried out using eight identified local areas in New SouthWales (NSW), Australia and across the
whole state entirely. Every model was calibrated separately for each local area and for the entire state. The local
and whole-area models were validated using the same test data set over 50 realizations. In particular, local pre-
diction accuracy of whole-area calibratedmodels was compared to that of locally calibratedmodels. The models
were tested separately for the standard soil depth layers including 0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm; 60–
100 cm. The results show that SVR models have a superior performance out of three tested models for all stan-
dardized depth layers. In general the local models outperform the whole-area models for all three testedmodels
with respect to the accuracy of predictions. All models displayed area specific performances proving the impor-
tance of inclusion of prevailing local conditions in SOCmodelling andmapping. Therefore,we introduce amoving
window approach where a hybrid series of locally calibrated models and a whole-area calibrated model can be
used against using one calibratedmodel for themodelling very largemapping extents.Movingwindowapproach
provides more accurate results having the lowest error compared to the whole-area model. Also it provides the
least biased predictions. Therefore, this novel approach provides a promisingway of increasing the efficiency and
accuracy of digital soil mapping.
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1. Introduction

Soil organic carbon (SOC) is one of the most researched soil proper-
ties due to its importance in agronomic sustainability (Reeves, 1997)
and carbon sequestration potential. Carbon sequestration is seen as
the best solution to reduce atmospheric carbon where both agriculture
and the environment are benefited. Consequently, several global and
national policy initiatives that revolve around the carbon sequestration
potential of SOC have come to the forefront (O'Rourke et al., 2015). A
carbon offset scheme known as the Carbon Farming Initiative (CFI) in-
stigated in Australia is a perfect example. Such programs rely on accu-
rate estimates of SOC content over the spatial extent of interest which

can be represented by a baseline SOCmap. SOCmappinghas been great-
ly benefited by Digital soil mapping (DSM). During the last decade, var-
ious DSM techniques ranging from simple linear models to complex
machine learning techniques have been employed for SOC mapping
(Minasny et al., 2013).

These techniques include, kriging (Cambule et al., 2014; Dai et al.,
2014), co-kriging (Odeh et al., 1995; Phachomphon et al., 2010), regres-
sion kriging (Mora-Vallejo et al., 2008; de Brogniez et al., 2014; Dorji
et al., 2014; Piccini et al., 2014), Linear mixed models (Rawlins et al.,
2009; Karunaratne et al., 2014), machine learning techniques such as
Artificial neural networks (Minasny and McBratney, 2002; Malone
et al., 2009; Zhao et al., 2010), Support Vector Regression (Ballabio,
2009), Regression tree models, such as Cubist (Adhikari et al., 2014;
Miklos et al., 2010; Rossel et al., 2014) and Random forests
(Wiesmeier et al., 2011; Subburayalu and Slater, 2013; Hengl et al.,
2015) and Generalised Additive Models (GAM) (Poggio et al., 2013; de
Brogniez et al., 2014).
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Foregoing techniques and models can be seen employed at various
scales ranging from small farm areas to larger regional and continental
extents for SOCmapping.When the requirement is tomap SOCof a larg-
er area, the preferred approach has to use a single calibrated model to
map the entire area. Alternatively, a series of locally calibrated models
can be used to map small areas that collectively cover the large region
of interest where there is a fairly reasonable sampling density or the
usage of hybrid series of local and whole-area calibrated models for
the areas with dense and sparse observation points respectively. The
latter approach is very uncommon in DSM literature to the best of our
knowledge. These two approaches coupled with different model types
such as multiple linear regression (MLR) Cubist and Support Vector Re-
gression (SVR) could produce results that are of varying accuracies. Per-
formance of suchmodels in predicting SOCover large spatial extents has
seldom been compared with respect to whole-area and locally calibrat-
edmodels. Therefore, this study aims to examine the SOC prediction ca-
pability of MLR, Cubist and SVR with respect to local versus whole-area
model training and application. The study is carried out using eight
identified local areas for the localized studies in the state of NSW and
a whole area study covering all of NSW. Based on the results, we make
recommendations on the best combinations of model type and spatial
extent used for calibration.

2. Methods

2.1. Study area

The study area is the state of New South Wales (NSW), Australia
which covers approximately 810,000 km2. The Great Dividing Range
which runs approximately north to south in the east has amajor impact
on the State's distribution of rainfall that results in four distinct climatic
zones. The area to the west of the Great Dividing Range which repre-
sents majority of NSW has an arid to semi-arid climate. The average an-
nual rainfall for this area ranges from 150 mm to 500 mm. The climate
along the flat, coastal plain east of the dividing range varies from cool
oceanic to humid subtropical from south to far north of the state. The
area has a higher annual rainfall ranges from 800 mm to 2000 mm.
(StormyWeather, Bureau of Meteorology). About 65% of the area is oc-
cupied by grazing lands which comprises of both native and modified
pastures. The nature conservation areas which accounts for around
7.6% of the of total land use are mostly located in the eastern coastal
areas. Dry land crops occupy about 9% of the area, while about 7% of

the land isminimally used. (Catchment Scale Landuse data, Department
of Agriculture, Australia).

2.2. Data sets and data processing

2.2.1. Soil data
SOC data consists of the University of Sydney research data and the

Terrestrial Ecosystem Research Network (TERN) data that are collected
by different institutions for various purposes. Therewere 5386 observa-
tion sites in total. The data were clustered as they came from different
survey projects from 1995 to 2014. The observed SOC content is given
by the g/100 g. Since the distribution was positively skewed, the data
was log-transformed for modelling procedures. The spatial distribution
of those sampling points within the study area is shown in Fig. 1.

2.2.1.1. Harmonizing observed soil profile data. The sampling depths of
the soil profiles were different to each other. For further analysis of
data, it is imperative to have a common depth interval range across all
sampling points. Malone et al. (2009) generalized and extended the
quadratic splinemodel of Bishop et al. (1999) and formulated a smooth-
ing spline function for vertical prediction of soil properties into specified
common depth interval range.

The smoothing parameter (λ) of the quadratic spline function
(Malone et al., 2009), is a determinant of the accuracy of prediction. It
is crucial to find out the best λ value that minimizes the prediction
error. Therefore, 506 sampling points which have more than 4 layers
of measurements were selected to find out the best fitting λ value.
The weighted average of the first two layers and the third and fourth
layers were calculated to form two layers for each profile. Those values
were then used to predict SOC values for the original sampling depths
with respect to a series of λ values (0.00001, 0.0001, 0.001, 0.01, 0.1,
0.5, 1, 2, and 5). The λ value which gave the minimum mean squared
error (MSE) value was selected as the best smoothing parameter.
Then, the depth intervals (0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–
100 cm) corresponding to the digital soil mapping specifications of the
GlobalSoilMap project (Arrouays et al., 2014) were used as the harmo-
nized depth intervals for spatial prediction models of SOC.

2.2.2. Environmental covariates
The content and the spatial distribution of SOC in an ecosystem are

driven by the environmental factors such as climate, underlying litholo-
gy, topography, fauna and flora. Introduced by Jenny (1941), this con-
cept was generalized and formalized by McBratney et al. (2003) as the

Fig. 1. (a) Spatial distribution of the sampling points in NSW, Australia, (b) histogram of observed SOC in log scale.
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