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Digital soil mapping (DSM) was used to generate soil property surfaces at 30 m resolution for Tasmanian
Government Land Suitability Modelling in Tasmania, Australia. Soil predictions were required for pH, EC, clay
percentage, stone content, drainage, and depth to sodic and impeding layer. Empirical modelling using a suite
of environmental covariates and the relevant soil attribute data from field-collected soil cores was used to
generate the digital maps. Environmental covariates included: SRTM DEM and derivatives, gamma radiometry,
legacy soil maps, surface geology, and multi-spectral satellite imagery.
An integral component of any DSM process is a sound sampling design that represents the full range of environ-
mental variables used. However, in cases where there are operational constraints, the approach needs to remain
flexible, efficient, and compatible with project area land use and terrain. In two separate study areas, a combined
700 training and 230 validation sites were sampled over 70,000 ha. A conditioned Latin hypercube (cLHS) sam-
pling design was used for the initial sampling for DSM training sites, with ‘contingency sites’ created for alterna-
tive sampling if access was constrained. The pre-defined (‘strict’) sample locations proved difficult to implement
in the field,with a variety of access issuesmaking sampling slow and arduous. In an attempt to increase sampling
progress rates to meet tight project milestones an alternative ‘relaxed’ sample design based on random sampling
of fuzzy k-means covariate clusters (strata) was used for the second study area. Amap of clusters provided to soil
sampling staff allowed difficult sites to be relocated within the same cluster type, maintaining stratification. The
relaxed approach still adequately represented the covariate distributionwhile providing greater flexibility to site
placement. This paper provides background to the Tasmanian DSM project, some discussion of sampling designs
for DSM, and the pros and cons of their implementation in the field with due consideration of operational con-
straints in a Tasmanian case study, highlighting the need for sampling flexibility within ‘real-world’ conditions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recently, there has been a growing concern over food security in
Australia where it is feared that food prices could rise by as much as
50% in the next decade. This is mainly due to a potential scaling back
of production in the Murray–Darling Basin as it faces both climate
change and a reduction in water allocation for irrigation. Tasmania is
seen as a potential and significant part of the solution,with its predicted
warming climate allowing a wider variety of food crops to be grown,
and a surfeit of water resources. Steps are being made to develop the
state as an important new agricultural production area for Australia
and the region by development of new irrigation areas, with the aspira-
tion of growing a wider variety of food crops. The basis for the planned
development is the efficient and sustainable management, movement,
and use of water through new irrigation networks.

The ‘Wealth from Water’ Project commenced in November 2010
to support irrigated agricultural expansion through land suitability map-
ping, using digital soil assessment (Carré et al., 2007). It was a partnership
between the Tasmanian Department of Primary Industries, Parks, Water
and Environment (DPIPWE), the Department of Economic Development,
Tourism and the Arts (DEDTA), the Tasmanian Institute of Agriculture
(TIA), ACLEP (the Australian Collaborative Land Evaluation Program),
and the University of Sydney (through an Australian Research Council
Linkage Project). Commencing in the Tasmanian Meander Valley
(43,000 ha) and Midlands (Tunbridge, 27,000 ha) irrigation districts, En-
terprise Suitability Rules were developed by TIA for 20 enterprises using
Tasmanian agricultural research trials, existing literature, and consulta-
tionwith industry experts. Enterprises included: alkaloid poppies, carrots,
hazelnuts, barley, blueberries, pyrethrum, and commercial hemp. The
suitability rule-sets required soil property and climateparameters, includ-
ing pH, EC (electrical conductivity), clay content, depth to sodic layer,
depth to impeding layer, stone content, drainage class, frost-risk, chill
hours, and growing-degree days (Kidd et al., 2012).
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There are now sufficient published examples describing the predic-
tion of soil property surfaces using digital soil mapping (DSM)method-
ologies based on the scorpan approach (McBratney et al., 2003), tomake
this a scientifically-valid operational approach. These predicted surfaces
can provide continuous and quantitative soil property estimates (as op-
posed to conventionally-derived polygonal soil type surfaces), also having
the advantage of statistical validation and associated uncertainty of pre-
diction. Soil propertymappingusing thesemethodologieswas considered
the optimal approach to provide suitability model inputs within available
time and resources. An integral component of a DSM process is a sound
sampling design that ensures calibration and validation sites are repre-
sentative of the full distribution of the covariates used for prediction. Ide-
ally sampling should encompass the full range of environmental
conditionswithin a study area. Doing thiswill limit the subjectivity inher-
ent in traditional sampling approaches such as free-survey (National
Committee on Soil and Terrain, 2009). However, for operational endeav-
ours such as the Wealth from Water Project, the sampling approach
needs to remain flexible, efficient, and compatible with project area
land use and terrain. Largemapping areas will require even greater oper-
ational flexibility. Such operational projects often have limited budgets,
are time-constrained, and require efficiencies in field effort, often the
most expensive component in land resource assessment. The common
DSM approach to sampling using a ‘strict’ sampling design with pre-
determined coordinates is often difficult and time-consuming to apply,
with numerous access constraints either slowing progress or preventing
sampling at desired locations. This paper documents an operational
DSM case study, the logistical problems encountered using a popular
pre-defined sampling strategy, and the interim solution developed and
applied within the tight project time-constraints. The approach used co-
variate stratification for a randomised sample design which allowed
physically impractical sites to be manually re-located within the field to
more accessible locations within corresponding strata, while still main-
taining the same number of samples from each of the strata types. The
thrust of this paper is not to provide an exhaustive review and com-
parison of themultitude of sampling techniques developed for predictive
soilmapping, but to discuss the problems inherent in real-world soil sam-
pling, and document the pragmatic methodological compromise used to
improve operational sampling speed and efficiency, while still providing
representation of the environmental co-variables used for predictions.

1.1. Soil sampling approaches

Strategies used for soil sampling design generally include; tradition-
al and subjective free-survey for conventional soil landscape, or soil as-
sociation mapping (National Committee on Soil and Terrain, 2009);
geostatistical approaches, that evenly sample the physical geographic
space; and techniques developed for digital soil mappingwhich sample
the entire covariate feature space (Minasny andMcBratney, 2006; Vašát
et al., 2010). Sampling optimisation across the full range of predictor or
explanatory variables (covariates) is necessary to maximise environ-
mental correlation (McKenzie and Ryan, 1999). Brus (2010) differenti-
ated between design-based and model-based approaches; design-
based sampling mainly uses a statistical approach where a random
component is essential in the selection of sampling locations, and the
inference is based on the selection probabilities. This is useful if there is
a need to know the status or the change in soil properties over an area,
e.g. monitoring soil carbon. A model-based approach presumes that the
unknown soil attribute value at any location is random; if there is a re-
quirement for mapping or knowing how the soil properties vary in the
field the model-based sampling approaches are commonly used.

A sampling strategy can either be undertaken in terms of optimally
covering the geographical space, the covariate feature space, or both.
There has been some debate as to whether geographic constraints,
i.e. spacing or dispersion of the sampling design, or perhaps incorpora-
tion of coordinate positions as covariates, is warranted (Minasny and
McBratney, 2006). The accuracy of estimating the spatial means of

an environmental variable can be increased by dispersing the sample
locations uniformly across the study area (Walvoort et al., 2010).
However, the need for the spatial dispersion of sample locations could
be diminished when using environmental variables for predictions,
or when environmental predictors are known and available (Brus
et al., 2006), that is, the sampling design is based on the covariate distri-
bution of values.

A popular sampling method used in DSM is the ‘conditioned Latin
hypercube’ (cLHS), a purposive model-based sampling approach that
maximally stratifies the full multivariate distribution, where the sample
distribution closely replicates the covariate distribution (Minasny and
McBratney, 2006). However, such pre-determined, ‘strict’ sampling
methods can be inflexible with little room for alternative site selection
in the field. This can be exacerbated when sampling intensively-used
agricultural land due to a range of access constraints, such as farmer
consent, infrastructure, contamination, travel distance and manage-
ment phase. Logistical and operational problems have been document-
ed using ‘strict’ approaches elsewhere; Roudier et al. (2012)
incorporated operational constraints into the cLHS design where sam-
pling costs were assimilated as a consideration of distance to roads for
ease of access, while Thomas et al. (2012) encountered access difficul-
ties due to extreme terrain, travel distance and vegetation cover while
sampling mountainous, heavily vegetated landscapes.

Clifford et al. (2014) also identified operational sampling problems
using a pre-defined sampling regime in a large and remote study region
in Queensland, Australia, totalling 12.8 million ha. In response, they
developed a ‘flexible Latin hypercube sampling (LHS)’ approach and
simulated efficiencies in field effort that potentially increase soil sam-
pling rates with respect to resourced time-constraints. Clifford et al.
(2014) aimed to optimally cover the covariate feature space while
targeting more easily accessible sites (constrained to buffers around
formed roads and tracks), and providing alternative nearby sites (cover-
ing a surrounding area of 40 ha) for considerationwhen initial sampling
sites are inaccessible. The flexible LHS approach was developed and
documented after completion of the Tasmanian field campaign de-
scribed in this paper, so was therefore not considered in this project.

Due to the unforseen time taken to carry out an initial cLHS sampling
campaign within our case study, a timely and alternative solution was
needed to ensure that remaining field sampling was completed by the
strict project milestones, and ensure field-work was completed before
many areas became too wet to sample due to expected seasonal rain.
It was chosen to use ‘fuzzy k-means’ (FKM) clustering of covariates as
sampling stratum, where target sites were equally distributed by num-
ber within each stratum, and field staff could move sites within the
mapped clusters to maintain stratification and representative covariate
distribution.

1.2. k-Means stratification of covariates

k-Means is a popular clustering methodology for multivariate
analysis which determines clusters based on multivariate centroids,
minimising the mean squared distance between objects and the closest
centroid values (Brus et al., 2006; Hartigan, 1985; MacQueen, 1967).
Multivariate within-cluster variance is optimised to be as small as
possible for each cluster, grouping very similar attribute values for
each cluster, and small spatial distances between them for spatially-
structured datasets (Burrough et al., 2000). Fuzzy k-means (FKM) is
an advanced option of ‘hard’ k-means where each observation has a de-
gree of belonging to clusters. Burrough et al. (2000) demonstrated the
use of FKM for partitioning soil–landscape data, useful for prediction
of discrete properties or soil types with boundary overlaps. It has also
been used for sampling design, both for geographical clustering, when
no environmental variables are used for predictions (Brus et al., 2006),
and feature, or covariate stratification (Minasny and McBratney,
2006). However, FKM is not able to accommodate categorical variables,
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