
Predicting and mapping the soil available water capacity of
Australian wheatbelt

J. Padarian a,⁎, B. Minasny a, A.B. McBratney a, N. Dalgliesh b

a Faculty of Agriculture and Environment, Department of Environmental Sciences, The University of Sydney, New South Wales, Australia
b CSIRO Ecosystem Sciences, Toowoomba, Queensland, Australia

a b s t r a c ta r t i c l e i n f o

Article history:
Received 30 June 2014
Received in revised form 17 September 2014
Accepted 18 September 2014
Available online 16 October 2014

Keywords:
Ensemble model
Genetic programming
Field capacity

Soil available water capacity (AWC) is the main source of water for vegetation and it is the potential amount of
water available for atmospheric exchange. Studying its spatial distribution is crucial for agricultural planning and
management and for use in biophysical modelling. The aim of this work is to obtain a continuous spatial predic-
tion of AWC over Australia's wheatbelt (about 1.75 million km2), using digital soil mapping techniques.We used
a data set of 806 soil profiles which have field measurements of drainage upper limit (DUL) and crop lower limit
(CLL). We mapped AWC at five depth intervals (0–5, 5–15, 15–30, 30–60, and 60–100 cm) with the help of dif-
ferent combinations of environmental information (topographic, climatic, soils, landsat imagery, gamma-ray
spectrometry) as covariates. The modelling techniques used were symbolic regression (GP), Cubist, and support
vectormachines (SVM).We also tried two averagingmethods to generate an ensemblemodel. We observed de-
creasing RMSE valueswith the addition of extra covariates and also an expected decreasing soil depth. In general,
SVMproduced the best accuracy.Wewere able to improve the predictions using one of the ensemble techniques,
based on aweighted average of GP, Cubist and SVMmodel. Themap generatedwith the optimal ensemblemodel
was an unrealistic representation of AWC therefore we decided to present a sub-optimal model as the final map.
We stress the need to not only focus on the numerical performance in order to obtain a flexible and stablemodel,
but also a coherent visual representation without anomalies.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Soil available water capacity (AWC) is defined as the amount of
water soil can store between field capacity or drainage upper limit
(DUL) and wilting point or crop lower limit (CLL). It is the main source
of water for vegetation development and is related to the potential
amount ofwater a soil couldmake available for the atmosphere through
evapotranspiration (Dunne and Willmott, 1996). Information about its
distribution in space is crucial for planning andmanagement in agricul-
ture, and for ecological modelling.

To model the spatial distribution of AWC, digital soil mapping has
been proposed (McBratney et al., 2003). The scorpan model describes
that soil properties can be predicted from its predicting factors in the
form of empirical regression equations. The general steps in themodel-
ling process involve: collection of a dataset of soil observations over the
chosen area of interest; compilation of relevant covariates for the area;
calibration or training of a spatial prediction function based on the ob-
served dataset; interpolation and/or extrapolation of the prediction

function over the whole area of interest; calculation of uncertainty;
and finally validation using existing or independent datasets.

Despite the importance of AWC, not many studies present a map-
pingmethodology at national scale. Hong et al. (2013) successfully pre-
dicted AWC for Korea based on detailed soil series maps and modal
profiles, also recognising the shortcomings due to variability within
mapping units. Poggio et al. (2010) used morphological features as co-
variates, obtaining an optimal model selecting covariates using general-
ised additivemixedmodels, tomapAWC in Scotland. Ugbaje andReuter
(2013) used two different covariate combinations (remote sensing
data; terrain, climate, and vegetation attributes) and pedotransfer func-
tions (PTFs) to map AWC in Nigeria, not finding a clear effect of number
of covariates onmodel accuracy. Most of these studies used PTFs to pre-
dict the AWC. Thus the uncertainty of the map depends also on the ac-
curacy of the PTFs.

In digital soil mapping, the visual representation of the product
(map) depends on the covariates and the models used. Several studies
that looked at the selection and parsimony of the covariates, and also
studies have compared different data mining predictions. However no
work has looked at the effect of both covariates andmodels on the visual
representation of the map.

A good digital soil map should have a balance of model parsimony
(number of covariates), accuracy (numerical performance) and realism
of the visual representations (maps). The aim of this work is to obtain a
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continuous spatial prediction of AWC over Australia, based on field
measured data that reconcile these three aspects, exploring the use of
different covariate combinations andmodelling techniques, and visual-
ly inspecting the generated maps.

2. Materials and methods

2.1. Data sets and study area

The data set used correspond to a CSIRO Ecosystem Sciences
(APSRU) compilation of 806 soil profiles that includes field measure-
ments of DUL and CLL for the most commonly grown crops of
Australia (Dalgliesh et al., 2012). Procedures for determination of
these properties are described in the accessory publication of the article
by Dalgliesh et al. (2009), “Procedures for determination of soil proper-
ties and states relevant to crop simulation and farmer cropmanagement
decision making”. The method is a modification of the techniques de-
scribed by Ratliff et al. (1983). Briefly, an area covering about 16 m2 of
soil was wetted using a trickle system. The water content and drainage
were monitored using a neutron moisture meter at the access tube at
the centre of the site down to a depth of 180 cm. Once the soil was
judged to be thoroughly wet, it was allowed to drain until moisture
monitoring indicated a minimal change in profile water status. Samples
for gravimetric moisture content and bulk density were taken. For CLL,
crops were grown in the field, and a rain-exclusion tent of 9 m2 was
installed. At crop maturity, soil moisture was determined at different
depths.

The soil orders represented by this database, according to the
Australian Soil Classification System, correspond to Calcarosol (4.22%),
Chromosol (4.96%), Dermosol (2.23%), Ferrosol (0.99%), Kandosol
(2.23%), Podosol (0.12%), Sodosol (5.21%), Tenosol (0.87%), Vertosol
(22.08%), and 57.07% of unclassified soils. Based on the location of the
unclassified soils and the dominant soil order map of Australia
(ASRIS), they correspond to Dermosol (10%), Ferrosol (0.87%), Hydrosol
(1.09%), Kandosol (32.61%), Kurosol (6.3%), Organosol (27.17%),
Podosol (1.52%), Rudosol (0.87%), Sodosol (11.09%), Tenosol (0.43%),
and Vertosol (8.04%).

A bioregion classification by Thackway and Cresswell (1995) was
used to limit the study area, selecting the bioregions which contained
observations of the APSRU data set. This selection, usually referred as
“wheatbelt”, is represented as the grey area in Fig. 1 and it is equivalent
to about 1.75 million km2.

2.2. Digital soil mapping model

In this studywe used the scorpan approach (McBratney et al., 2003)
as an empirical quantitative description of relationships between soil
and other spatially referenced factors. It is represented as S = f(s, c, o,
r, p, a, n)+ ϵ, where S: is the variable of interest (DUL and CLL), s: stands
for soil (other properties of the soil at a point), c: climate (climatic prop-
erties of the environment at a point), o: organisms (vegetation or fauna
or human activity), r: topography (landscape attributes), p: parent ma-
terial (lithology); a: age (the time factor); n: space (spatial position);
and ϵ correspond to the spatially modelled residuals (usually by
kriging).

2.2.1. Soil attribute: S
Wepredicted soil properties relatedwithwater holding capacity of a

soil. DUL represents the volumetric water content an initially saturated
soil holds after draining for 2–3 days (Veihmeyer and Hendrickson,
1949). On the other hand, CLL corresponds to the volumetric soil
water remaining in the soil after a healthy crop, with uninterrupted
root development, has reached maturity under soil water-limited con-
ditions (Hochman et al., 2001). Both properties are measured in the
field independently and were governed by different processes, hence
different sources of error, thus we decided to model them separately.

N

Fig. 1. Location of soil profiles from APSRU database. Grey area represents the bioregion subset where predictions were made.

Table 1
Statistics of soil samples used for model generation.

Mean S.D. Min. Median Max.

DUL (%) 30.20 11.54 3.00 32.00 56.00
CLL (%) 16.90 8.61 0.40 18.00 53.00
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