ELSEVIER Contents lists available at ScienceDirect ### Water Research journal homepage: www.elsevier.com/locate/watres # Multi-species measurements of nitrogen isotopic composition reveal the spatial constraints and biological drivers of ammonium attenuation across a highly contaminated groundwater system Naomi S. Wells ^{a, *}, Vivien Hakoun ^{b, 1}, Serge Brouyère ^b, Kay Knöller ^a - ^a Department of Catchment Hydrology, Helmholtz Centre for Environmental Research UFZ, Theodor-Lieser Str. 4, 06112 Halle (Saale), Germany - ^b Université de Liège, Département ArGEnCo, Hydrogéologie et Géologie de l'Environnement, Bât. B52/3 Sart-Tilman, B-4000 Liege, Belgium #### ARTICLE INFO Article history: Received 14 December 2015 Received in revised form 28 March 2016 Accepted 13 April 2016 Available online 25 April 2016 Keywords: Ammonium attenuation Groundwater Industrial pollution Nitrate reduction Nitrite reduction Stable isotopes #### ABSTRACT Groundwater under industrial sites is characterised by heterogeneous chemical mixtures, making it difficult to assess the fate and transport of individual contaminants. Quantifying the in-situ biological removal (attenuation) of nitrogen (N) is particularly difficult due to its reactivity and ubiquity. Here a multi-isotope approach is developed to distinguish N sources and sinks within groundwater affected by complex industrial pollution. Samples were collected from 70 wells across the two aquifers underlying a historic industrial area in Belgium. Below the industrial site the groundwater contained up to 1000 mg N I^{-1} ammonium (NH $_{+}^{+}$) and 300 mg N I^{-1} nitrate (NO $_{3}^{-}$), while downgradient concentrations decreased to ~1 mg l⁻¹ DIN ([DIN] = $[NH_4^+-N] + [NO_3^--N] + [NO_2^--N]$). Mean $\delta^{15}N$ -DIN increased from \sim 2% to +20% over this flow path, broadly confirming that biological N attenuation drove the measured concentration decrease. Multi-variate analysis of water chemistry identified two distinct NH⁺₄ sources $(\delta^{15}N-NH_4^+)$ from -14% and +5%) within the contaminated zone of both aquifers. Nitrate dual isotopes co-varied (δ^{15} N: -3% - +60%; δ^{18} O: 0% - +50%) within the range expected for coupled nitrification and denitrification of the identified sources. The fact that $\delta^{15}N-NO_2^-$ values were 50%–20% less than δ^{15} N—NH $_{\pm}^{4}$ values in the majority of wells confirmed that nitrification controlled N turnover across the site. However, the fact that $\delta^{15}N-NO_2^-$ was greater than $\delta^{15}N-NH_4^+$ in wells with the highest $[NH_4^+]$ shows that an autotrophic NO2 reduction pathway (anaerobic NH4 oxidation or nitrifier-denitrification) drove N attenuation closest to the contaminant plume. This direct empirical evidence that both autotrophic and heterotrophic biogeochemical processes drive N attenuation in contaminated aquifers demonstrates the power of multiple N isotopes to untangle N cycling in highly complex systems. © 2016 Elsevier Ltd. All rights reserved. #### 1. Introduction Global freshwater resources, 30% of which are held in subsurface aquifers, are under pressure due to the combination of increased human demand and decreasing natural supply (Griebler and Avramov, 2015; Klove et al., 2014). Effective means of remediating (removing) groundwater contaminants are therefore needed as on-going pollution simultaneously diminishes the supply of potable water. Groundwater management strategies are often limited by a poor understanding of the biogeochemical controls on contaminant cycling. Improving measurements of nitrogen's (N) fate and transport in groundwater is a priority due to both its ubiquity, and the 'cascade' of environmentally deleterious outcomes produced during transport due to its reactivity (Galloway et al., 2003). In natural systems, groundwater [N] is determined by residence time (Hinkle and Tesoriero, 2014). However, diffuse nitrate (NO_3^-) inputs (excess soil fertilisation, animal excreta) and point ammonium (NH_4^+) inputs (sewage, industrial effluent) overwhelm time-based constraints on N fate and transport. Turnover is complicated further in industrially contaminated sites, where multiple, asynchronous, contaminants (including salts, heavy metals, and hydrocarbons) can alter both the processes and rates of N transformations (Kleinsteuber et al., 2012; Ponsin et al., 2014). ^{*} Corresponding author. Present address: Centre for Coastal Biogeochemistry, School of Environment, Science and Engineering, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia. E-mail address: naomi.wells@scu.edu.au (N.S. Wells). ¹ Present address: IDAEA-CSIC Spanish National Research Council, Barcelona, Spain. Attenuation of groundwater N (defined as the conversion of reactive N species to inert nitrogen gas (N₂)) is thought to be driven by denitrification, the step-wise reduction of NO_3^- to nitrous oxide (N2O) and N2. Biological denitrification occurs under anaerobic conditions, using carbon (C) or sulphide minerals, as electron donors (Burgin and Hamilton, 2008; Rivett et al., 2008), Abiotic denitrification (chemodenitrification) that uses iron as an electron donor an occur, although its prevalence remains uncertain (Iones et al., 2015). The attenuation of NH₄ in groundwater therefore depends on the coupling of NH⁺₄ oxidation (nitrification: autotrophic conversion of ammonia (NH₃) to nitrite (NO₂) and then NO₃ under aerobic conditions) with denitrification (Izbicki, 2014). This limits N attenuation to the plume fringe, as anaerobic conditions within the plume inhibit nitrification while oxygen (O_2) outside of the plume inhibits denitrification (Meckenstock et al., 2015). Yet evidence for the importance of processes such as anaerobic NH[±] oxidation (anammox: autotrophic conversion of NH₄ and NO₂ to N₂ (Sonthiphand et al., 2014)), co-denitrification (conversion of NO_2^- and organic N to $N_2O + N_2$ (Selbie et al., 2015)), and nitrifierdenitrification (reduction of NO_2^- to $N_2O + N_2$ by autotrophic nitrifying bacteria (Kool et al., 2010)) challenge the assumption that attenuation is controlled by coupled nitrificationdenitrification. The different energetic controls on these attenuation pathways make identifying their role in N turnover fundamental to the development of effective remediation schemes. However, accurately measuring the importance of these pathways in contaminated systems is difficult. Modelling N losses from redox chemistry is complicated by the fact that N transformations occur in micro-scale 'hot spots' that are easily missed in such regional-scale sampling campaigns (Meckenstock et al., 2015; Rivett et al., 2008). Stoichiometric approaches can be used to estimate N attenuation rates and/or source mixing (Koh et al., 2010; Murgulet and Tick, 2013), but cannot be used in many contaminated groundwater sites when multiple sources of multiple chemical contaminants violate assumptions of mass conservation. Injecting ¹⁵N labels, a typically robust tool for measuring N attenuation (Kellogg et al., 2005), is also not viable in many contaminated sites as it relies on the presence of a conservative tracer. Advances in analysing the natural abundance composition of N species therefore create a potentially unique opportunity to assess N attenuation in contaminated groundwater (Hatzinger et al., 2013). This approach is based on the knowledge that the preferential use of heavy v. light isotopes during microbial reactions creates predictable Rayleigh-based patterns in the residual substrate pool: the ratio between the measured and initial substrate concentration (C/C_0) is related to the ratio between its measured and initial isotopic composition (R/R_0) by the reaction-specific fractionation factor (α) (Eq. (1)). $$\frac{R}{R_0} = \left(\frac{C}{C_0}\right)^{\alpha - 1} \tag{1}$$ Isotope values are reported in δ ‰, where the relative concentration is normalised to a standard; α values are reported as enrichment factors (ε ; $\varepsilon=(\alpha-1)\times 1000$). ε values are known for a growing number of N processes (Table 1): generally microbial preference for light isotopes causes the δ^{15} N of the residual substrate to increase as the reaction progresses ($\varepsilon=-\%$), although some reactions cause inverse fractionation ($\varepsilon=+\%$). As physical [N] changes (dilution or sorption) do not affect δ^{15} N composition, δ^{15} N patterns over time/distance can be used distinguish biological turnover from transport (Fenech et al., 2012). Table 1 Overview of the microbial processes potentially affecting N fate in NH $_4^+$ contaminated aquifers. The N isotopic fractionation factors ($^{15}\epsilon$) for each step of each pathway are listed in table. (1) pH determines the chemical equilibrium between NH $_4^+$ and NH $_3$, across which $^{15}\epsilon_{eq}$ is constant. (2) Under anaerobic conditions, NH $_4^+$ ($^{15}\epsilon_{amx,NH4}$) can be coupled with NO $_2^-$ ($^{15}\epsilon_{amx,NO2}$) to create N $_2$ by anammox bacteria and archaea. (3) Under aerobic conditions, NH $_3$ is oxidised to NO $_2^-$ ($^{15}\epsilon_{amo,NH3}$) and then NO $_3^-$ ($^{15}\epsilon_{amo,NO2}$). (4) Denitrification sequentially reduces NO $_3^-$ to NO $_2^-$ ($^{15}\epsilon_{ami,NO3}$), N $_2^-$ 0 ($^{15}\epsilon_{ami,NO2}$), and N $_2$ ($^{15}\epsilon_{ami,NO2}$) under anaerobic conditions by using C as an electron donor. Denitrification driven by mineral oxidation (chemodenitrification) is also possible. (5) NH $_3^-$ 0 oxidation can progress to N $_2^-$ 0 production under low O $_2^-$ 2 conditions, bypassing production and reduction of NO $_3^-$ (6), and DNRA can occur under electron donor rich, low O $_2^-$ 2 conditions, both with unknown effects on the isotopic composition of NH $_3^-$ 3, NO $_3^-$ 3 or NO $_2^-$ 2. | ID | Process | Fractionation factor(s) | References | |----|---|---|---| | 1 | Chemical equilibrium | $^{15}\varepsilon_{\mathrm{eq}}=20\%$ | Casciotti et al., 2003 | | 2 | Anammox | $^{(a)}$ 15 $\varepsilon_{amx,NH4} = -27 \pm 3\%$ $^{(b)}$ 15 $\varepsilon_{amx,NO2} = -16 \pm 5\%$ | (a,b) Brunner et al., 2013 | | 3 | Ammonia oxidation | $^{(a)}_{\epsilon_{amo,NH3}}^{15} = -14 \rightarrow -38\%$ $^{(b)}_{\epsilon_{amo,NO2}}^{15} = +12.8\%$ | (a) Casciotti et al., 2003
(b) Casciotti 2009 | | 4 | Denitrification/chemodenitrification ^a | (a) $^{15}\varepsilon_{\text{denit,NO3}} = -3 \rightarrow -30\%$
(b) $^{15}\varepsilon_{\text{denit,NO2}} = -5 \rightarrow -25\%$
(c) $^{15}\varepsilon_{\text{denit,N20}} = -31 \rightarrow -25\%$ | (a) Granger et al., 2008, Kritee et al., 2012, Sebilo et al., 2003, Jones et al., 2015 ^a (b) Bryan et al., 1983, Casciotti et al., 2002 (c) Sutka et al., 2003, 2004 | | 5 | Nitrifier-denitrification ^b | (a) $^{15}\varepsilon_{\text{n-d},\text{NH3}} = ?$
(b) $^{15}\varepsilon_{\text{n-d},\text{NO2}} = ?$ | 7 | | 6 | DRNA ^c | (a) $^{15}\epsilon_{\text{DRNA,NO3}} = ?$
(b) $^{15}\epsilon_{\text{DRNA,NO2}} = ?$ | | ^a Chemodenitrification causes comparable N isotope fractionation (Jones et al., 2015). ^b Fractionation factors for nitrifier-denitrification have not been directly measured, but may reasonable be expected to be comparable to those for the NH₃ oxidation for step (a) as the same enzymes and microbial populations are involved (Kool et al., 2010; Colliver and Stephenson, 2000). ^c There are no direct measurements of fractionation factors for DNRA, but anomalous relationships between $\delta^{15}N-NO_3$ and $\delta^{18}O-NO_3$ have been reported in regions where DNRA is known to occur (Dhondt et al., 2003). ## Download English Version: # https://daneshyari.com/en/article/4481003 Download Persian Version: https://daneshyari.com/article/4481003 <u>Daneshyari.com</u>