
Reducing the execution time of fair-queueing packet schedulers

Paolo Valente
Department of Physics, Computer Science and Mathematics, University of Modena and Reggio Emilia, Modena, Italy

a r t i c l e i n f o

Article history:
Received 16 July 2013
Received in revised form 20 February 2014
Accepted 18 April 2014
Available online 29 April 2014

Keywords:
Packet scheduling
QoS
Fair queueing
Computational cost

a b s t r a c t

Deficit Round Robin (DRR) is probably the most scalable fair-queueing packet scheduler. Unfortunately, it
suffers from high delay and jitter with respect to a perfectly fair (and smooth) service. Schedulers provid-
ing much better service guarantees exist, but have a higher computational cost.

In this paper we deal with this issue by proposing a modification scheme for reducing the amortized
execution time of the latter, more accurate schedulers. Modified schedulers preserve guarantees close
to the original ones, and can also handle seamlessly both leaves and internal nodes in a hierarchical set-
ting.

We also present Quick Fair Queueing Plus (QFQ+), a fast fair-queueing scheduler that we defined using
this scheme, and that is now in mainline Linux. On one hand, QFQ+ guarantees near-optimal worst-case
deviation with respect to a perfectly fair service. On the other hand, with QFQ+, the time and energy
needed to process packets are close to those needed with DRR, and may be even lower than with DRR
exactly in the scenarios where the better service properties of QFQ+ make a difference.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Most network applications require or benefit from their packet
flows being guaranteed a given share of the link bandwidth. In
addition, packet delays and packet delay variations play a critical
role with time-sensitive applications. In this respect, a well-known
figure of merit related to delay variations is packet jitter, com-
monly, but not uniquely, defined as the average deviation from
mean delay.

In many contexts, packet schedulers are a necessary component
for providing applications with service guarantees exactly in terms
of the above figures of merit. As a first example, consider the public
Internet. On one side, both the total IP traffic and, in particular, the
component of time-sensitive traffic, are growing and expected to
continue to grow at a high rate [1]. On the other side, to reduce
costs, operators strive to achieve their target service levels with
as little resources as possible. In other words, operators tend to
provide available bandwidths close to offered loads, often by keep-
ing active only the minimum number of links needed.

Considering also the magnitude of the fluctuations of arrival
rates in a complex network like Internet, it follows that the links
of, e.g., DiffServ-compliant Internet routers [2] are likely to experi-
ence (increasing) saturation periods. Being the offered load of EF
queues an important, and growing, portion of the total load on
these links [1], EF queues may then become long. In the end, some

unlucky EF flows may easily experience high packet delays/jitters
if, e.g., some other flows have a bursty behavior and no intra-class
scheduling is performed.1

Besides, given the continuous growth of time-sensitive traffic,
and hence of its variance, a fixed inter-class bandwidth distribu-
tion may be a too rigid scheme. It might be instead more appropri-
ate to let the cumulative fraction of the bandwidth devoted to
time-sensitive applications dynamically grow with the actual
cumulative demand of these applications. A simple way to achieve
this goal is to use just a flat weighted fair-queueing discipline, i.e., a
discipline where each flow is assigned a weight, and that tries to
provide each flow with a fraction of the link bandwidth propor-
tional to the weight of the flow. Flows in the EF class could then
be simply assigned a higher weight than the other flows.

There are then contexts where stronger, and often tighter,
bandwidth and packet-delay/jitter guarantees must be provided
by contract. Examples are managed networks for implementing
IPTV services, or, at a smaller scale, automotive and avionics local
communication networks. In particular, the latter local networks
are being used more and more to carry both safety–critical and
infotainment traffic. In this respect, the ideal way both to prevent
infotainment traffic from interfering dangerously with safety–crit-
ical traffic, and to meet the typical requirements of infotainment

http://dx.doi.org/10.1016/j.comcom.2014.04.009
0140-3664/� 2014 Elsevier B.V. All rights reserved.

E-mail address: paolo.valente@unimore.it

1 Packet-dropping disciplines are of paramount importance as well, but they are
out of the scope of this paper.

Computer Communications 47 (2014) 16–33

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/ locate/comcom

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2014.04.009&domain=pdf
http://dx.doi.org/10.1016/j.comcom.2014.04.009
mailto:paolo.valente@unimore.it
http://dx.doi.org/10.1016/j.comcom.2014.04.009
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom


traffic, is to guarantee the latter both a minimum and a maximum
(capped) bandwidth, plus a small-enough packet delay/jitter.

Also in these contexts with stronger requirements, bandwidth
over-provisioning may not be an option, because of costs, power
consumption and other technical issues. As a consequence, the
use of schedulers providing tight bandwidth and packet-delay
guarantees may make the difference between feasibility and
unfeasibility of the target time-sensitive applications.

Unfortunately, systems with a low computational power may
have difficulty executing (also) packet schedulers at line rate,
whereas, on high-speed systems, scalability issues arise when the
number of flows and the speed of the outgoing link grow. On the
other hand, recent results on fast packet I/O [3] reduce packet-pro-
cessing time at such an extent that millions of packets per second
can be easily processed on commodity hardware. Such a dramatic
improvement leaves more time for packet scheduling. Only very
efficient schedulers can however comply with the extremely short
packet transmission times of a 1–10 Gbit/s link.

Deficit Round Robin (DRR) [4] is probably one of the best
candidates to keep up with line rate, both on slow and high-speed
systems. In fact, DRR is one of the simplest fair-queueing schedul-
ers providing strong service guarantees. Unfortunately, if packet
sizes and/or flow weights vary, then DRR suffers from a high
worst-case packet delay and jitter with respect to an ideal, per-
fectly fair (and smooth) service. As shown in Section 6, in simple,
realistic scenarios where packet sizes and flow weights vary, both
packet delay and delay variation can easily be so high to make
time-sensitive applications unfeasible, even if their bandwidth
requirements are fully met.

On the opposite side, several accurate fair-queueing schedulers
do not suffer from this problem, as they guarantee near-optimal
deviation with respect to the above ideal service (with any
packet-size and flow-weight distribution). Some of these schedul-
ers are also quite efficient [5–7]; but even the fastest of them,
namely Quick Fair Queueing (QFQ) [5], is at least twice as slow
as DRR. In this paper we try to fill this gap with a solution that
allows near-optimal service guarantees to be provided at a compu-
tational cost comparable or even lower than that of DRR.2

1.1. Contribution

We propose a general modification scheme for fair-queueing
schedulers, in which packet flows are grouped into aggregates,
and the original, costly operations of the schedulers are used to
schedule aggregates and not single flows. Inside aggregates, flows
are scheduled with DRR. Modified schedulers are also ready to
schedule internal nodes in a hierarchical setting (see Section 7
for a comparison against classical hierarchical schedulers).

Denoted as M the maximum number of flows in an aggregate,
the scheme that we propose enjoys the following key property:
during full-load periods, the higher M is, the longer each aggregate
is served before the costly operations of the original scheduler are
executed. Hence the closer the amortized execution time of the
modified scheduler becomes to that of DRR.

Of course, the higher M is, the more service guarantees deviate
from the original ones. In this respect, in this paper we also com-
pute the guarantees provided by the modified scheduler in case
the original one belongs to the family of the fair-queueing schedul-
ers providing optimal or near-optimal worst-case service guaran-
tees [9,10,6,7,5]. In particular, we show how little the QoS
degradation is, even for values of M for which the execution-time
cut is close to its maximum.

In practical terms, the main information conveyed by the
formulas reported in this paper is that both the original and the
modified schedulers always guarantee a smooth service, even in
a possible scenario where the theoretical bounds are actually
reached. On the opposite side, we also show bounds for DRR, which
highlight that DRR suffers from serious packet-delay and jitter
problems. Our experimental results confirm all these facts.

Finally, we describe Quick Fair Queueing Plus (QFQ+), a new
scheduler that we have defined by applying this scheme to QFQ
[5], and that we have implemented in Linux (QFQ+ replaced
QFQ in mainline Linux from 3.8.0). Through QFQ+, we complete
the analysis of QoS degradation with a concrete example, by
comparing the service guarantees of QFQ+ against those of QFQ
and DRR, analytically and experimentally. We also compare the
efficiency (execution time,energy consumption, . . .) of these
schedulers experimentally. The gist of our results is that with
QFQ+ the time and the overall system energy needed to process
packets is definitely lower than with QFQ, and may be even
lower than with DRR exactly in the scenarios where the accurate
service guarantees of QFQ+ make a difference with respect to
DRR.

The last, apparently surprising result is a consequence of a more
general fact highlighted by our experiments: the order in which a
scheduler dequeues packets influences the execution time and the
energy consumption of both the scheduler itself and the other
tasks involved in processing packets.

1.2. Organization of this document

In Section 2 we describe the modification scheme in detail,
whereas in Section 3 we introduce QFQ+. In Section 4 we show
the general service guarantees provided by modified schedulers,
which we prove then in Section 5. In Section 6 we instantiate these
guarantees for QFQ+. Finally, after comparing the contributions
provided in this paper against related work in Section 7, we report
our experimental results in Section 8.

2. Modification scheme

In this section we show the modification scheme and discuss its
main benefits. For the reader convenience, the notations used in
this paper are also reported in Table 1. Besides, for ease of presen-
tation, hereafter we call SCHED a generic fair-queueing scheduler
to which our modification scheme is applied, and SCHED+ the
resulting new scheduler. The modification scheme described in
the rest of this section is depicted in Fig. 1. As already said, SCHED+
groups flows into aggregates, where an aggregate is a set of at most
M flows, all with the same maximum packet size and the same
weight, and M is a free parameter.3

We define as backlog of a flow the sum of the sizes of the packets
currently stored in the flow queue, and as backlog of an aggregate
the sum of the backlogs of its flows. Finally, we say that a flow/
aggregate is backlogged if its backlog is higher than 0.

SCHED+ iteratively chooses the aggregate to serve. Once
selected an aggregate for service, SCHED+ serves only the flows
in that aggregate for a while, then it chooses the next aggregate
and so on. SCHED+ establishes the maximum amount of service
that each aggregate can receive once selected for service, by
assigning to each backlogged aggregate, say the kth aggregate, a
budget equal to mkLk bits, where mk is the current number of flows
in the aggregate and Lk is the maximum packet size for the flows in

2 Part of the material presented in this paper can also be found in our preliminary
work [8].

3 In an actual instance of SCHED+, such as the Linux implementation of QFQ+,
aggregates can be created, and flows can be added to/removed from them, when new
flows are created or when flow parameters are changed.

P. Valente / Computer Communications 47 (2014) 16–33 17



Download English Version:

https://daneshyari.com/en/article/448252

Download Persian Version:

https://daneshyari.com/article/448252

Daneshyari.com

https://daneshyari.com/en/article/448252
https://daneshyari.com/article/448252
https://daneshyari.com

