
IP address lookup using bit-shuffled trie

Derek Pao ⇑, Ziyan Lu, Yat Hang Poon
Electronic Engineering Department, City University of Hong Kong, Hong Kong

a r t i c l e i n f o

Article history:
Received 8 December 2012
Received in revised form 14 January 2014
Accepted 9 April 2014
Available online 18 April 2014

Keywords:
IPv4 and IPv6 address lookup
Packet forwarding
Pipelined architecture

a b s t r a c t

An algorithmic RAM-based IP address lookup method called bit-shuffled trie is presented. By rearranging
the bits of the prefixes, memory efficient index tables can be constructed to support IP address lookup.
The address lookup engine can be implemented using pipelined architecture with simple processing
logic. The proposed method has superior memory efficiency. The memory cost for a 474 K prefixes
IPv4 routing table is only 1.1 MB, and the memory cost for a 215 K 64-bit prefixes IPv6 routing table is
about 1.7 MB. The exceptional memory efficiency of the proposed method allows us to implement the
IP address lookup engine for both IPv4 and IPv6 on a single FPGA device. Incremental updates to the rout-
ing table can be handled efficiently. On average, about 8 memory-write operations to the data structures
are required to process an insertion or deletion.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The rapid growth of the Internet in terms of the number of users
and the communication line speed have posed great challenges to
the design of real-time packet forwarding hardware, in particular
the IP address lookup engine. The routing table in today’s core
routers can have half a million IPv4 prefixes. To support 100 Gbps
line speed, the IP address lookup engine needs to perform 300
million lookup per second (MLPS).

Ternary content addressable memory (TCAM) had been a popu-
lar candidate for implementing lookup tables [24,26] in high-speed
switches/routers, e.g. Cisco Catalyst 6500 series. The TCAM device
is used as a co-processor to relieve the workload of the network
processor from performing IP header lookups. A typical TCAM cell
contains 16 transistors, and it is much more expensive than SRAM.
Power dissipation of TCAM is another concern. Hence, the industry
and academia are eager to research on more cost-effective
algorithmic RAM-based IP address lookup methods. For example,
the IBM PowerEdge network processor is equipped with on-chip
hardware accelerator to support wire-speed IP address lookup
and packet classification [3,17].

The migration from IPv4 to IPv6 adds one more dimension to
the problem, i.e. the address length is increased from 32 bits to
128 bits. The transition from IPv4 to IPv6 will likely be a very long
process. The current IPv4 network will be in use and continues to
grow, and the IPv4 and IPv6 networks can co-exist for many years

[20]. Hence, the next generation IP address lookup method should
be applicable to both IPv4 and IPv6.

In this paper a new IP address lookup method called bit-shuffled
trie is presented. The proposed method has superior memory effi-
ciency compared to existing methods [25]. The memory cost for an
IPv4 routing table with 474 K prefixes is as low as 1.1 MB, and the
memory cost for a 215 K IPv6 routing table with 64-bit prefixes is
about 1.7 MB. The exceptional memory efficiency of the proposed
method allows us to implement the IP address lookup engine for
both IPv4 and IPv6 in a single FPGA device, and achieve a through-
put of 350 MLPS. Power dissipation of our method is only 1.7 W
and 4.2 W for IPv4 and IPv6 address lookup, respectively. The
lookup engine is composed of several linear pipelines with simple
processing logic. Incremental updates to the routing table can be
supported. On average, about 8 memory writes are required to per-
form an insertion/deletion to the routing table.

1.1. General background and motivation

The IP lookup problem can be modeled as a searching problem
over a binary-trie. The system traverses the trie along the path that
corresponds to the packet’s destination IP address. The last prefix
seen along the given path is the longest matching prefix (LMP),
and the packet will be forwarded using the next-hop field
associated with the LMP found. One way to speed up the traversal
of the trie is to use multibit-trie [8,30], where multiple bits of the
input address are processed in one step. The number of bits
processed in a step is called the stride width.

The method of [8] exemplifies the simplicity of RAM-based IP
address lookup. The lookup engine is consisted of two levels of

http://dx.doi.org/10.1016/j.comcom.2014.04.006
0140-3664/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: d.pao@cityu.edu.hk (D. Pao), ziyanlu2-c@my.cityu.edu.hk

(Z. Lu), garypoon014@gmail.com (Y.H. Poon).

Computer Communications 47 (2014) 51–64

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/locate /comcom

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2014.04.006&domain=pdf
http://dx.doi.org/10.1016/j.comcom.2014.04.006
mailto:d.pao@cityu.edu.hk
mailto:ziyanlu2-c@my.cityu.edu.hk
mailto:garypoon014@gmail.com
http://dx.doi.org/10.1016/j.comcom.2014.04.006
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

index tables in the basic configuration. The first level table (called
TBL24) has 224 entries, and the second level table (called TBLlong)
contains multiple 256-entry blocks. Prefixes with up to 24 bits
are expanded to 24 bits, and are stored in TBL24. Prefixes with
25 bits or more are expanded to 32 bits and are stored in TBLlong.
This configuration is referred to as the 24–8 multibit-trie. To find
the LMP for an input address the system will first take the most
significant 24 bits, i.e. bits 1 to 24, of the input address to access
TBL24. The information stored in TBL24 can be either the next-
hop data (if the LMP for the input address is no longer than 24 bits),
or a reference address for accessing TBLlong (if the LMP may be
longer than 24 bits). For the latter case, the system will take the
last 8 bits of the input address, i.e. bits 25 to 32, as the offset value.
The system computes the effective address for accessing TBLlong by
adding the 8-bit offset to the reference address obtained from
TBL24. The IP address lookup operation can be completed in at
most two memory accesses.

Simplicity is the major advantage of the above approach. The
major disadvantage is the high memory cost. According to the eval-
uation of [8] using a relatively small routing table (less than 50 K
prefixes), a 21-3-8 multibit-trie consumes 9 MB, and a 16-8-8 mul-
tibit-trie consumes 105 MB. A major reason for the high memory
cost is that a significant proportion of the index tables are either
empty or being used to store duplicated prefixes due to prefix
expansion.

There have been attempts to reduce the memory cost of trie-
based method using bit-map representation [7,23,32]. The overall
binary-trie is divided into a number of subtries, and the locations
of prefix nodes in a subtrie can be represented by a bit-vector. In
addition to the bit-vector, the data structures also need to provide
information for the associated next-hop data and the reference
pointers for accessing the next level subtries. If the stride width
is equal to s, the length of the bit-vector is equal to 2s+1–1. The
stride width is restricted to a small value, e.g. no more than 8,
otherwise the logic circuits for processing the bit-vector will be
too complex. One can also see that most of the storages are in fact
consumed by the reference pointers. The memory cost of [7] is
about 11 to 13 bytes per IPv4 prefix.

From the above discussion, we can make the following observa-
tions. First, the advantages of multibit-trie are the speed and sim-
plicity. However, the memory efficiency is not satisfactory. Many
of the index table entries are storing null values or duplicated pre-
fixes due to the needs for prefix expansion. Second, the memory
efficiency of the bit-map approach can be further improved if we
can do away with the needs of the reference pointers in the data
structure. This can be possible if the bit-map approach is used to
represent subtries at the bottom level, i.e. there is no more next
level subtrie.

Let’s consider the case where we are searching for the LMP of an
input address against a set of prefixes with a minimum length Lmin

and maximum length Lmax. In the conventional multibit-trie
approach, a prefix with Lmax � k bits will likely be expanded to 2k

entries, and this will lead to low memory efficiency. In our method,
we try to minimize the memory cost of the IP address lookup
engine by the following strategies.

(1) Prefixes in the routing table are divided into 6 groups based
on the prefix length, such that Lmax � Lmin is equal to 3
in a group. By doing so, the bottom level subtrie can be
represented by a 15-bit vector. Prefix expansion can be elim-
inated, and no reference pointers are required in the bit-map
data structrures.

(2) All the prefixes in a group have a minimum length of Lmin bits.
The leading Lmin bits of the prefixes are called the fixed-length
portion, and the remaining Lmax � Lmin bits are called the
extension bits. A memory efficient search engine based on a

novel concept called the bit-shuffled trie is used to find the
matching fixed-length portion for the input address. Once
the matching fixed-length portion is found, the hardware
can process the 3 extension bits and the associated bit-map
to determine the LMP in the group. The logic circuit for han-
dling 15-bit vector is relatively simple.

(3) We shall exploit the parallelism offered by hardware imple-
mentations. Separate hardware pipelines are used to search
the 6 groups of prefixes in parallel. A priority selection mod-
ule is then used to determine the overall LMP of the input
address.

We illustrate the general idea of the bit-shuffled trie with a sim-
ple example. Consider a group of 5-bit prefixes listed in Table I. The
organization of the trie for this set of prefixes and the lookup tables
for the 3–2 multibit-trie is shown in Fig. 1. The first 3 bits of the
input address is used to access table T1 with 8 entrires. If a refer-
ence address is found in T1, the last 2 bits of the input address
are added to the reference address to access T2. We can see in this
example that 3 out of 8 entries in T1 are not used, and 12 out of 20
entries in T2 are not used.

If we rearrange (shuffle) the address bits by swapping the right-
most 2 bits with their left-hand-side neighboring bits, we shall
obtain the revised trie structure shown in Fig. 2. Note the changes
in the locations of the prefix nodes. We can see that all the nodes
on level-3 of the bit-shuffled trie have exactly one prefix in the cor-
responding subtrie. Hence, if the search key is also shuffled in the
same way, we can use the first 3 bits of the bit-shuffled key to
index into the first level table T1. There is no null entry in T1. In this
example, the second level index table T2 is not required. The last 2
bits of the bit-shuffled prefix (residue prefix) can be stored in T1,
and the system only needs to compare the last two bits of the
bit-shuffled search key with the stored value to determine if we
have a match.

Bit-shuffled trie is motivated by multibit-trie. However, there
are three major differences between the two methods.

(1) In the conventional multibit-trie, bits of the input address
are processed from left to right. In bit-shuffled trie, bits of
the input address can be processed in some other order.

(2) In the conventional multibit-trie, the same group of bits in the
input address are processed in a given level. In the bit-shuffled
trie, different subsets of bits of the input address can be
processed in a given level depending on the search path.

(3) Prefix expansion is required in multibit-trie, where prefixes
are expanded to some predefined discrete lengths. In
bit-shuffled trie, the prefixes are divided into several length-
groups, and we use the bit-map approach to handle the
variations in prefix length withing a length-group such that
prefix expansion can be avoided.

Organization of the remaining parts of this paper is as follow.
We shall give a review of related work in Section 2. Readers who

Table I
Sample set of prefixes.

Prefix Original value Bit-shuffled value

A 00001 00100
B 00010 01000
C 01000 00010
D 01011 01110
E 10011 11100
F 10100 10001
G 10110 11001
H 11001 10110

52 D. Pao et al. / Computer Communications 47 (2014) 51–64

Download English Version:

https://daneshyari.com/en/article/448254

Download Persian Version:

https://daneshyari.com/article/448254

Daneshyari.com

https://daneshyari.com/en/article/448254
https://daneshyari.com/article/448254
https://daneshyari.com

