
Expediating IP lookups with reduced power via TBM and SST supernode caching

Ying Zhang a, Lu Peng a,*, Wencheng Lu b, Lide Duan a, Suresh Rai a

a Department of Electrical & Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
b Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL 32611, United States

a r t i c l e i n f o

Article history:
Received 17 February 2009
Received in revised form 12 August 2009
Accepted 14 October 2009
Available online 27 October 2009

Keywords:
Tree bitmap (TBM)
Shape shifting trie (SST)
IP lookup
Supernode
Caching

a b s t r a c t

In this paper, we propose a novel supernode caching scheme to reduce IP lookup latencies and energy
consumption in network processors. In stead of using an expensive TCAM based scheme, we implement
a set-ssociative SRAM based cache. We use two different algorithms, tree bitmap (TBM) and shape shift-
ing trie (SST), to organize an IP routing table as a supernode tree composed of a group of supernodes. We
add a small supernode cache in-between the processor and the low-level memory containing the IP rout-
ing table in a tree structure. The supernode cache stores recently visited supernodes of the longest
matched prefixes in the IP routing tree. A supernode hitting in the cache reduces the number of accesses
to the low-level memory, leading to a fast IP lookup. According to our simulations, up to 72% memory
accesses can be avoided by a 128 KB TBM supernode cache for the selected three trace files, and up to
78% memory accesses can be reduced while using a same size of SST supernode cache. Average TBM
and SST supernode cache miss ratios are as low as 4% and 7%, respectively. Compared to a TCAM with
the same size, the TBM and SST supernode caches can both reduce 77% of energy consumption.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Packet routing is a critical function of network processors. An IP
router determines the next network hop of incoming IP packets by
destination addresses inside the packets. A widely used algorithm
for IP lookup is Longest Prefix Matching (LPM). The adoption of a
technique Classless Inter-Domain Routing (CIDR) [1] had made ad-
dress allocation more efficient. In an IP router with CIDR, a hroute
prefix, prefix lengthi pair denotes an IP route, where the prefix
length is between 1 and 32 bits. For every incoming packet, the
router determines the next network hop in two steps: First, a set
of routes with prefixes that match the beginning of the incoming
packet’s IP destination address are identified. Second, the IP route
with the longest prefix among this set of routes is selected to route
the incoming IP packet.

IP routing table organization and storage is a challenging design
problem for routers with increasingly large tables. Many commer-
cial network processors [2,3,4] achieve wire speed IP routing table
lookup through high speed memories such as Ternary Content
Addressable Memories (TCAMs) and specialized hardware. TCAMs
have an additional ‘‘don’t care” bit for every tag bit. When the
‘‘don’t care” bit is set the tag bit becomes a wildcard and matches
anything. TCAM’s fully associative organization makes it parallelly
search all the routes simultaneously, leading to low access latency.

However, its high cost and high power consumption [5,6] hamper
TCAM being widely used.

IP caching has been extensively studied in [7,8,9], where caches
are leveraged to provide a fast path for IP lookup to improve the
average lookup time. Recently, researchers proposed the replace-
ment of TCAMs by relative less expensive SRAMs. With well orga-
nizations, SRAMs can also achieve high throughput and low latency
for IP routing table lookup [6,10,11] . In this paper, we propose a
supernode based caching scheme to efficiently reduce IP lookup la-
tency in network processors. We utilize two different strategies,
tree bitmap and shape shifting trie, to construct two types of
supernode trees. Tree bitmap (TBM), which is proposed in [12],
organizes an IP routing table to a regular shaped supernode tree.
In a 32-level binary tree, we represent it by an 8-level supernode
tree if we compress all 4-level subtrees, whose roots are at a level
that is a multiple of 4 (level 0, 4,. . ., 28), to be supernodes. On the
other hand, shape shifting trie (SST) [13] generates a supernode
tree composed of irregular shaped supernodes, which optimized
the worst case IP address lookup performance. Lu and Sahni [14]
further reduced memory requirement and lookup time for supern-
ode tree. We add a small TBM or SST supernode cache in-between
the processor and the low-level memory containing the IP routing
table in a tree structure. The supernode cache stores recently vis-
ited supernodes of the longest matched prefixes in the IP routing
tree. A supernode hitting in the cache reduces the number of acces-
ses to the low level memory, leading to a fast IP lookup. In [15], we
demonstrated that a small cache for regular shaped TBMs can sig-
nificantly reduce the memory accesses and power consumption. In

0140-3664/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.comcom.2009.10.006

* Corresponding author.
E-mail addresses: yzhan29@lsu.edu (Y. Zhang), lpeng@lsu.edu (L. Peng),

wlu@cise.ufl.edu (W. Lu), lduan1@lsu.edu (L. Duan), srai@lsu.edu (S. Rai).

Computer Communications 33 (2010) 390–397

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/ locate/comcom

http://dx.doi.org/10.1016/j.comcom.2009.10.006
mailto:yzhan29@lsu.edu
mailto:lpeng@lsu.edu
mailto:wlu@cise.ufl.edu
mailto:lduan1@lsu.edu
mailto:srai@lsu.edu
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom


this paper, we further extend the supernode cache to work for not
only regular shaped TBMs, but irregular shaped SSTs. We also pres-
ent more descriptions and experimental results in this version.

While worst case lookup performance is critical to deal with
malicious users who attempts to flood network with packets, aver-
age lookup performance is another important metric for power
consumption and general Internet router throughput. Hence, one
category of literature [7,8,9] has been focusing on the average per-
formance metrics. For network processor manufacturers, power
dissipation is a first-order concern in processor design. Previous
studies [16,17,18] show that persistent high power consumption
tends to rapidly heat the processor, and thus largely degrade its
reliability and lifetime due to the high temperature, which will
introduce serious problems to the processor, such as wear-out of
the critical hardware. Reducing average memory accesses is an effi-
cient method to decrease power consumption and improve general
Internet router throughput [19,20]. Therefore, we focus on reduc-
ing average power consumption and the average number of mem-
ory accesses because they can better contribute to a cool network
processor.

In our simulation, we compared the TBM and the SST supernode
caching scheme with another two caches: a simple set-associative
IP address cache and a fully associative TCAM. Several results can
be summarized from our experiments: (1) average 69%, up to
72%, of total memory accesses can be avoided by using a small
128 KB tree bitmap supernode cache for the selected three IP trace
files, and up to 78% memory accesses can be reduced while using a
same size of shape shifting trie supernode cache. (2) A 128 KB of
our proposed supernode cache outperforms a same size of set-
associative IP address cache 34% in the average number of memory
accesses while organizing the IP routing table as a tree bitmap. (3)
Compared to a TCAM with the same size, both the TBM and SST
supernode cache saves 77% of energy consumption.

The left of this paper is organized as follows. Section 2 intro-
duces related concept of the tree bitmap structure and the shape
shifting trie. Section 3 explains the proposed supernode caching
scheme. Section 4 lists our experiment results. Section 5 makes a
conclusion. Through the paper, we sometimes use the term subtree
to indicate a supernode.

2. Related work and background

Many of the data structures developed for the representation of
a forwarding table are based on the binary trie structure [21]. A bin-
ary trie is a binary tree structure in which each node has a data
field and two children fields. Branching is done based on the bits
in the search key. A left child branch is followed at a node at level
i (the root is at level 0) if the ith bit of the search key (the leftmost
bit of the search key is bit 0) is 0; otherwise a right child branch is
followed. Level i nodes store prefixes whose length is i in their data
fields. The node in which a prefix is to be stored is determined by
doing a search using that prefix as key.

Fig. 1(a) shows a set of 5 prefixes. The * shown at the right end
of each prefix is used neither for the branching described above nor
in the length computation. So, the length of P2 is 1. Fig. 1(b) shows
the binary trie corresponding to this set of prefixes. Shaded nodes
correspond to prefixes in the rule table and each contains the next
hop for the associated prefix. In this paper, we utilize two different
optimized trees for the proposed supernode caching.

2.1. Tree bitmap (TBM)

Tree bitmap (TBM) [12] has been proposed to improve the look-
up performance of binary tries. In TBM we start with the binary trie
for our forwarding table and partition this binary trie into subtries

that have at most S levels each. Each partition is then represented
as a (TBM) supernode. Fig. 2(a) shows a partitioning of the binary
trie of Fig. 2(b) into 4 subtries W–Z that have 2 levels each.
Although a full binary trie with S = 2 levels has three nodes, X
has only 2 nodes and Y and Z have only one node each. Each par-
tition is represented by a supernode (Fig. 2(b)) that has the follow-
ing components:

1. A (2S � 1)-bit bit map IBM (internal bitmap) that indicates
whether each of the up to 2S � 1 nodes in the partition contains
a prefix. The IBM is constructed by superimposing the partition
nodes on a full binary trie that has S levels and traversing the
nodes of this full binary trie in level order. For node W, the
IBM is 110 indicating that the root and its left child have a prefix
and the root’s right child is either absent or has no prefix. The
IBM for X is 010, which indicates that the left child of the root
of X has a prefix and that the right child of the root is either
absent or has no prefix (note that the root itself is always pres-
ent and so a 0 in the leading position of an IBM indicates that
the root has no prefix). The IBM’s for Y and Z are both 100.

2. A 2S-bit EBM (external bit map) that corresponds to the 2S child
pointers that the leaves of a full S-level binary trie has. As was
the case for the IBM, we superimpose the nodes of the partition
on a full binary trie that has S levels. Then we see which of the
partition nodes has child pointers emanating from the leaves of
the full binary trie. The EBM for W is 1011, which indicates that
only the right child of the leftmost leaf of the full binary trie is
null. The EBMs for X, Y and Z are 0000 indicating that the nodes
of X, Y and Z have no children that are not included in X, Y, and
Z, respectively. Each child pointer from a node in one partition
to a node in another partition becomes a pointer from a supern-
ode to another supercode. To reduce the space required for
these inter-supernode pointers, the children supernodes of a
supernode are stored sequentially from left to right so that
using the location of the first child and the size of a supernode,
we can compute the location of any child supernode.

3. A child pointer that points to the location where the first child
supernode is stored.

4. A pointer to a list NH of next hop data for the prefixes in the par-
tition. NH may have up to 2S � 1 entries. This list is created by
traversing the partition nodes in level order. The NH list for W

Fig. 1. Prefixes and corresponding binary trie.

Fig. 2. TBM for binary trie of Fig. 1.

Y. Zhang et al. / Computer Communications 33 (2010) 390–397 391



Download English Version:

https://daneshyari.com/en/article/448268

Download Persian Version:

https://daneshyari.com/article/448268

Daneshyari.com

https://daneshyari.com/en/article/448268
https://daneshyari.com/article/448268
https://daneshyari.com

