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a b s t r a c t

Water resource management decisions often depend on mechanistic or empirical models

to predict water quality conditions under future pollutant loading scenarios. These deci-

sions, such as whether or not to restrict public access to a water resource area, may

therefore vary depending on how models reflect process, observation, and analytical

uncertainty and variability. Nonetheless, few probabilistic modeling tools have been

developed which explicitly propagate fecal indicator bacteria (FIB) analysis uncertainty into

predictive bacterial water quality model parameters and response variables. Here, we

compare three approaches to modeling variability in two different FIB water quality

models. We first calibrate a well-known first-order bacterial decay model using approaches

ranging from ordinary least squares (OLS) linear regression to Bayesian Markov chain

Monte Carlo (MCMC) procedures. We then calibrate a less frequently used empirical

bacterial die-off model using the same range of procedures (and the same data). Finally, we

propose an innovative approach to evaluating the predictive performance of each cali-

brated model using a leave-one-out cross-validation procedure and assessing the proba-

bility distributions of the resulting Bayesian posterior predictive p-values. Our results

suggest that different approaches to acknowledging uncertainty can lead to discrepancies

between parameter mean and variance estimates and predictive performance for the same

FIB water quality model. Our results also suggest that models without a bacterial kinetics

parameter related to the rate of decay may more appropriately reflect FIB fate and trans-

port processes, regardless of how variability and uncertainty are acknowledged.

Published by Elsevier Ltd.

1. Introduction

Effective water quality modeling involves two critical

components (see National Research Council (2001, Section 4);

Novotny (2003, Chapter 13) as well as DiToro (1984) and

Chapra (2003)). First, a mathematical function f is identified

which relates the expected value (or rather, an unobservable

in situ value) of a pollutant concentration ct at time t (in mass

or counts per unit volume) to model parameters b and vari-

ables X. Second, discrepancies between f and measured values

for ct (represented as c0t) are characterized, often through an

additive residual error term e (following Borsuk et al., 2002):

c0t ¼ fðX;bÞ þ e (1)

or, less frequently, through a mathematical or probabi-

listic function (or combination thereof) g representing an
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explicit (and perhaps hierarchical) relationship between ct

and c0t:

ct ¼ fðX;bÞ
c0t ¼ gðctÞ

(2)

Water resource management programs, exemplified in part

by recent Total Maximum Daily Load (TMDL) assessments and

similar studies (for more on the TMDL program, see Houck,

2002; Reckhow, 2003; Shirmohammadi et al., 2006), often rely

on models resembling equation (1) which are calibrated using

ordinary least squares (OLS) regression (as described in

Weisberg, 2005, pp. 21–32). This approach implies that all

sources of variability, including intrinsic variability in water

quality measurements (such as those associated with the

number and volume of sample aliquots, as described in

McBride, 2005, Chapter 10) and natural variability in the

pollutant fate and transport process (such as the variability

associated with different environmental conditions, as

described in Noble and Fuhrman, 1997; Noble et al., 2003), can

collectively be acknowledged by an independent residual

error term e drawn from a normal No(0, s) or lognormal LN(0, s)

probability distribution with standard deviation s. While the

validity of this assumption varies from one pollutant to the

next (in part, due to the range of common assumed probability

distributions, as discussed in Ott, 1995; McBride, 2005, Chap-

ters 9 and Chapter 2, respectively), it may be particularly

inappropriate for use in fecal indicator bacteria (FIB) water

quality modeling studies because of how FIB concentrations

are measured.

FIB concentrations are commonly reported as either

colony-forming unit (CFU) or most probable number (MPN)

values (in organisms per ml). Both measures have probability

distributions which are not normal (for a range of historical

and recent perspectives, see Greenwood and Yule, 1917;

Eisenhart and Wilson, 1943; Gronewold and Wolpert, 2008),

and are related to the true FIB concentration c by mathemat-

ical functions which include design elements of the laboratory

procedure from which they are derived (such as the dilution

ratio, or the number and volume of sample aliquots). It is

commonly assumed, for example, that the number of colonies

counted on a growth plate y in a membrane filtration (MF)

procedure (see Dufour et al., 1981, for a description of

membrane filtration procedures) has a Poisson Po(l) proba-

bility distribution with mean and variance l (see Haas and

Heller, 1988; Haas, 1989, for statistical assumptions related to

CFU procedures). Some authors argue that a negative binomial

model may more accurately represent the distribution of

colonies on a filter plate when dispersion is greater than

Poisson (see Pipes et al. (1977); El-Shaarawi et al. (1981);

Christian and Pipes (1983) as well as McBride (2005, pp. 211)).

Analysis of the negative binomial probability distribution

model (and its effects on model calibration and predictive

performance) is an area for additional research; here we

discuss only the Poisson probability model (for more on

Poisson and negative binomial probability models see

McBride, 2005, Chapters 2 and 6):

l ¼ cV=d (3)

yjlwPoðlÞ ¼ lye�l=y ! (4)

CFU ¼ yd=V (5)

where d¼ dilution factor; y¼number of identifiable colony-

forming unit; V¼ sample aliquot volume.

Because sample aliquot volume V, dilution factor d, and

similar features of a water quality analysis procedure might (if

explicitly represented in a model) explain some of the vari-

ability observed in water quality samples (see, for example,

Gronewold et al., 2008), it seems logical that they can be

regarded as data during model calibration (as demonstrated in

Qian et al., 2005) in a model of the form in equation (2) (for

similar applications in epidimiology studies, see Frome et al.,

1973; Frome and Checkoway, 1985). Nonetheless, we find that

common approaches to representing uncertainty and vari-

ability in FIB water quality modeling studies (as suggested in

Benham et al., 2006; Muñoz-Carpena et al., 2006; Manache

et al., 2007) assume pollutant concentration measurements

are best represented by models of the form in equation (1) and,

furthermore, that those models are best calibrated using OLS

regression procedures.

Nomenclature

LN lognormal distribution

N number of samples in an experiment

No normal distribution

Po Poisson distribution

V sample aliquot volume (ml)

X set of model variables

ct in situ fecal indicator bacteria concentration at

time t (organisms per ml)

c0 in situ fecal indicator bacteria concentration at

time t¼ 0 (organisms per ml)

c0t fecal indicator bacteria concentration

measurement at time t (organisms per ml)

f mathematical function

g probability function

i index of sample number in experiment j

j index of experiment number

k first-order bacteria loss rate (1/day)

ln, log10 natural and base-10 logarithm

p unitless model parameter

t time (days)

te duration of FIB maintenance phase (days)

y number of colonies counted on a growth plate

Greek letters

b set of model parameters

d dilution factor

e ordinary least squares (OLS) model residual error

term

l expected number of bacterial colonies on a growth

plate

s standard deviation of e in ln(organisms per ml)
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