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a b s t r a c t

For rational biokinetic functions such as the Michaelis–Menten equation, in general,

a nonlinear least-squares method is a good estimator. However, a major drawback of

a nonlinear least-squares estimator is that it can end up in a local minimum. Rearranging

and linearizing rational biokinetic functions for parameter estimation is common practice

(e.g. Lineweaver–Burk linearization). By rearranging, however, the error is distorted. In

addition, the rearranged model frequently leads to a so-called ‘errors-in-variables’ esti-

mation problem. Applying the ordinary least squares (OLS) method to the linearly repar-

ameterized function ensures a global minimum, but its estimates become biased if the

regression variables contain errors and thus bias compensation is needed. Therefore, in

this paper, a bias compensated total least squares (CTLS) method, which as OLS is a direct

method, is proposed to solve the estimation problem. The applicability of a general linear

reparameterization procedure and the advances of CTLS over ordinary least squares and

nonlinear least squares approaches are shown by two simulation examples. The examples

contain Michaelis–Menten kinetics and enzyme kinetics with substrate inhibition.

Furthermore, CTLS is demonstrated with real data of an activated sludge experiment. It is

concluded that for rational biokinetic models CTLS is a powerful alternative to the existing

least-squares methods.

ª 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Rational biokinetic functions frequently appear in studies

with a biological component, as in e.g. activated sludge models

and other biotechnological applications, in metabolic

pathway modeling, gene engineering, and so on. A simple

example of a rational biokinetic function is the well-known

Michaelis–Menten equation:

v ¼ vmaxS
Km þ S

(1)

Parameters that appear nonlinearly in a rational mathemat-

icalmodel,as in thiscase vmax and Km, can be estimatedby linear

techniques after rearranging and reparameterizing the equa-

tions. Several types of linearization like the so-called Line-

weaver–Burk (L–B) and Eady–Hofstee (E–H) linearizations

(Doran,1995)havebeenproposed inthepastandarewidelyused

in practice. It is recognized, however, that by rearranging the

model in a linear-in-the-parameters form the error becomes

distorted (Cornish-Bowden, 2002). A nonlinear least squares

(NLS) approach, using iterative search techniques, avoids this

error distortion introduced by linearization. It, therefore, often

results in a more facile determination of the kinetic constants

(Garfinkel et al., 1977). In addition to this, accurate parameter

estimates may result when applying an optimal input design

(Keesman and Stigter, 2002; Stigter and Keesman, 2004).

However, proper initial estimates are required as local minima

do frequently occur (Yildirim et al., 2003; Doeswijk, 2007). As

aconsequence of this, wrongmodel predictionscaneasilyoccur.

In some extreme cases, NLS can even result in a loop whenever

two local minima are situated close to each other and when the

corresponding sum of squares of the residuals are equal.
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A natural solution would be to use a multi-start procedure.

However, even with multi-start procedures, a global

minimum cannot be assured nor an approximation error in

terms of the parameter estimates or the sum of squares can be

given. Hence, the relevance of reparameterization methods

that result in a linear estimation problem, allowing a direct

solution with inherent unique global minimum.

Usually, without any special care, biased estimates result

when regression variables contain errors (see e.g. Norton,

1986). Let us therefore have a closer look at Eq. (1). We note

that usually the rate v in Eq. (1) is assumed to be the uncertain

variable. But, as the rate is obtained from measured substrate

concentrations, it is reasonable to expect that the substrate

concentration S at the right-hand side of Eq. (1) is also

uncertain. This assumption makes parameter estimation

related to the Michaelis–Menten equation a so-called errors-

in-variables problem. Consequently, after a linear repar-

ameterization of Eq. (1), an ordinary least squares (OLS) solu-

tion to the resulting error-in-variables problem leads to biased

estimates. An appropriate direct solution to these type of

problems is given by total least squares (TLS) methods (Golub

and Van Loan, 1980; Van Huffel and Vandewalle, 1991).

However, nonlinearities in the uncertain data, in our case as

a result of the linear reparameterization, may still lead to

biased estimates (see Box, 1971). Hence, bias compensation

must be introduced. As a consequence of all of this, a bias

compensated total least squares (CTLS) estimator (Vanders-

teen, 1998), that is asymptotically unbiased for static poly-

nomial functions and a direct method, is proposed in this

paper and applied to some relevant biokinetic models.

The objective of the paper is to illustrate the wide appli-

cability of our linearly reparameterizing method for rational

(biokinetic) functions and to evaluate the performance of

CTLS on these functions. As for NLS, we will not provide the

technical details of CTLS. As yet, we believe that it suffices to

show how the ingredients for CTLS, as data and covariance

matrix, can be specified for some real cases. The outline of the

paper is as follows. First, a general approach to linearly rep-

arameterize rational functions is proposed and the handling

of data errors is discussed in some more detail. Subsequently,

the procedure, using CTLS for the estimation of the parame-

ters, is firstly illustrated to a model with Michaelis–Menten

kinetics. Furthermore, to show the wide applicability of our

model reparameterization and CTLS, the parameters of

enzyme kinetics with substrate inhibition are estimated as

well. Finally, the practical usability is shown by estimating the

biokinetic parameters in an activated sludge model from real

respirometric data.

2. Preliminaries

2.1. Standard least-squares estimation

Consider a linear regression model, written in matrix

notation as

y ¼ Xqþ e (2)

where for t¼ 1, ., N we define the measured output vector

yd[y(1), ., y(N )]T, error vector ed[e(1), ., e(N )]T, which both

are column vectors of length N, and parameter vector qd[q1,

., qp]T with N� pþ 1. Furthermore, X is the N� p data matrix,

containing the regressor values at different time instances t. It

is widely known that the ordinary least-squares estimate of q is

given by

bq ¼ �XTX
��1

XTy (3)

under the assumption that the p� p matrix XTX is invertible.

For nonlinear-in-the-parameter models of the form

y ¼ fðX; qÞ þ e (4)

with f(X, q) a vector function relating the explanatory variables

to the output, no direct solutions to the estimation problem

exist. The estimates are found after minimizing a predefined

objective function. Commonly, this objective function is

chosen as

JðqÞ ¼ 3ðqÞT3ðqÞ ¼
XN

t¼1

32ðq; tÞ (5)

where 3ðqÞ ¼ y� fðX; bqÞ is an N-dimensional vector that

contains the parameter dependent prediction errors. This

function is also indicated as the sum of squares and is, in

mathematical jargon, the squared 2-norm of the prediction

Nomenclature

C dissolved oxygen concentration

e measurement error

Kc Monod half-saturation constant for dissolved

oxygen

Ki inhibition constant

Km Michaelis–Menten constant

Ks Monod half-saturation constant for substrate

N number of samples

Nð,Þ normal distribution

p parameter vector

r respiration rate

R set of real numbers

S substrate concentration

t time

v substrate conversion rate

Vm maximum substrate conversion rate

X regression matrix

XBH biomass concentration

y measurement

Y yield coefficient

q reparameterized parameter vector

s standard deviation

mm maximum specific growth rate

G covariance matrix

F data matrix

Subscripts

k discrete-time index

Superscripts

0 nominal value

T transpose of a vector or matrix

˜
transformed variable

ˆ estimated value
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