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a b s t r a c t

The rapid advances in mobile devices and their embedded sensors have enabled a compelling paradigm for

collecting ubiquitous data to share with each other or the general public. In this paper, we study how to

achieve the close-to-optimal transmission utility performance for sensor-enhanced mobile devices that are

capable of harvesting energy from the environment. This is a very challenging task due to the stochastic and

unpredictable nature of data arrival, channel condition, and energy replenishment. By taking advantage of

the Lyapunov optimization framework, we propose an online scheduling algorithm called OSCAR (Optimal

SCheduling AlgoRithm), which jointly make control decisions on system state, energy harvesting, and data

transmission for achieving optimal utility on mobile sensing devices. Different from traditional techniques,

OSCAR does not require any knowledge of system statistics, including the energy state process. Rigorous

analysis and extensive experiments have demonstrated both the system stability and the utility optimality

achieved by the OSCAR algorithm.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recent advances in mobile devices (e.g., smartphones, wearable

devices and sensor-equipped vehicles) and their embedded sensors

(e.g., camera, microphone and GPS) have provided a novel paradigm

for sensing and monitoring human daily behaviors [1], urban envi-

ronment [2], and even earth surface [3]. Data information collected by

these mobile devices combined with the support of the cloud where

data fusion takes place [4], make mobile sensing a versatile platform

to relieve the need for deploying and maintaining static sensing in-

frastructures. However, the advances in battery have been slow to re-

spond to mobile application demands evolved over the years. Energy-

harvesting, i.e., converting ambient energy to electricity energy, has

emerged as an alternative to address the problem of finite battery ca-

pacity [5]. To take full advantage of the energy harvesting capacity, it

is of central importance to develop energy management algorithms

for mobile sensing devices to improve communication performance

and energy efficiency [6].

In this paper, we consider the problem of designing an utility

optimal scheduling algorithm for a single sensor-enhanced mobile

device system. The system operates in discrete time with unit time

slots. In every time slot, the first decision for the device to make is to
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decide whether to enter the sleep state or stay active during this slot.

If it enters the sleep state, it turns off the network module and does

not respond to any task request for processing or transmitting data.

If instead the device stays active, then it determines how much sen-

sory data to admit for the flows it supports, and how to use current

network and energy resources efficiently for data transmission. The

system receives utility by transmitting sensory data to a dedicated

server that is responsible for data storage and analysis [7]. Our ob-

jective is to maximize the aggregate flow utility, subject to the con-

straints that the average data backlog is finite, and the energy con-

sumed is no more than the energy stored at all time. The constraint

on energy availability obviously complicates the design of scheduling

algorithm, since the current control decisions may cause energy out-

age in the future and affect some future control decisions [7]. Such a

problem can be modelled and solved by Dynamic Programming [8].

However, the Dynamic Programming approach requires substantial

statistical information of the system dynamics, and suffers from the

“curse of dimensionality” where the complexity of computing the op-

timal strategy grows with the system size [8].

To address the above problem, we propose an Optimal SCheduling

AlgoRithm (OSCAR) for achieving optimal utility for sensor-enhanced

mobile devices with energy harvesting capabilities, based on the

recently developed technique of Lyapunov optimization [8]. OSCAR

maximizes the traffic utility by independently and simultaneously

making online decisions to control system state, energy harvesting

and data transmission behaviors. It is able to obtain a time aver-

age utility within a deviation of O(1/V) from the optimum, with an
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average queue size tradeoff that is O(V), where V is a non-negative

parameter that weights the extent to which utility maximization is

emphasized as compared to system stability. OSCAR operates with-

out requiring any statistical knowledge of system dynamics, and is

computationally efficient for implementation. We thoroughly evalu-

ate the performance of OSCAR with rigorous theoretical analysis and

extensive simulation experiments.

The remainder of this paper is organized as follows. In Section 2,

we present the problem formulation, and in Section 3, we develop our

online algorithm, OSCAR, as well as provide its performance analysis.

The analysis is further validated by extensive simulation experiments

introduced in Section 4. Section 5 reviews some related studies. Fi-

nally, Section 6 concludes this paper.

2. Problem formulation

We consider a system consists of a single mobile sensing device,

which has been equipped with M types of sensors [9]. This device

is powered by a finite capacity battery, and is capable of harnessing

energy from the environment and converting it to electrical energy

[5,10]. Due to inherent resource constraints, the device has to trans-

fer the sensory data to a dedicated server for storage, analysis and

making them available to interested people [4,11]. The whole system

operates in discrete time with unit time slots t ∈ {0, 1, 2, . . .}.

2.1. Device working state model

In each time slot t, the device can choose to stay in the active state

or in the sleep state, so as to better utilize the harvested and stored

energy. We model this active/sleep decision by θ (t). That is, θ(t) = 1

if the device transmits data in time slot t, otherwise θ(t) = 0.

2.2. Data transmission utility model

In time slots when the device stays active, it decides how much

sensory data generated from its sensor m ∈ {1, . . . , M} can be admit-

ted into the transmission buffer for further handling. These data are

classified and stored in separate queues according to their types. Let

Rm(t) represents the amount of type m data queued at time t. We as-

sume that 0 ≤ Rm(t) ≤ Rmax for all m ∈ {1, . . . , M} with some finite

constant Rmax at all time. During time slots when the device is in the

sleep state (i.e., θ(t) = 0), we have Rm(t) = 0 for all m ∈ {1, . . . , M}.

Each type of sensory data is associated with a utility func-

tion �m(r̄m), where r̄m is the time average rate of the type

m sensory data admitted into the buffer, defined as r̄m =
limT→∞ 1

T

∑T−1
t=0 E{θ(t)Rm(t)}. Each function �m(r) is assumed to be

non-decreasing, continuously differentiable, and strictly concave in r

with a bounded first derivative [7]. Besides, �m(0) = 0. We use λm

to denote the maximum first derivative of �m(r), i.e., λm = (�m)′(0)
and denote

λ = max
m

λm (1)

2.3. Transmission energy consumption model

We assume that the device has been equipped with more than one

wireless interfaces, e.g., Bluetooth, WiFi or 3G [12,13], that are hetero-

geneous in terms of network availability, achievable throughput and

energy expenditure [11,14]. If the device stays active in a time slot, its

network module needs to choose a suitable one from available wire-

less links for transmitting data to the server [11,15]. Let ω(t) denotes

this transmission decision, and the vector of data service rates [8]

μ(t) = (μ1(t), . . . ,μM(t)) is jointly determined by ω(t) and channel

state S(t). Specifically, the network module observes the current S(t)

and selects ω(t) within some abstract set � that specifies the decision

options. Then, the service rates for slot t can be given by functions

μ̂m(ω, S) as μm(t) = μ̂m(ω(t), S(t)) for each m ∈ {1, . . . , M}. We as-

sume a maximum transmission rate μmax
m , regardless of ω(t) and S(t),

so that 0 ≤ μ̂m(ω(t), S(t)) ≤ μmax
m .

It has been revealed by recent studies [14] that, the amount of en-

ergy consumed for data transmission by a mobile device is primarily

associated with the wireless interface used and its current link band-

width, as formally characterized as follows:

N(t) = [αB(t) + β]τ (2)

where α and β denote the empirical coefficients in the power model,

and different types of interfaces have distinct power coefficients

[14]. Besides, τ denotes the time span of one time slot, and B(t) =
B̂(ω(t), S(t)) is the bandwidth of current selected link in time slot t.

It is obvious that there exists the constraint that Nmin ≤ N(t) ≤ Nmax

for some 0 < Nmin < Nmax < ∞. Since the system bandwidth is shared

by all the M types of data flows, we know that B(t)τ = ∑M
m=1 μm(t).

2.4. Energy queue model

The device is assumed to be powered by a battery with a finite

capacity. We use E(t) to denote the amount of remaining energy left

in the battery observed by the device at time t. It is compulsory that

the consumed energy must be no more than what is available. There-

fore, the energy consumption actions have to satisfy the following

constraint:

P(t) + N(t) ≤ E(t) (3)

where P(t) denotes the energy consumed for state transition, data

processing and system management. We assume that P(t) is known

to the device [15,16], and 0 ≤ P(t) ≤ Pmax with some finite Pmax for all

time. Actually, for some mobile devices featured by low power and

long lifetime, this portion of energy consumption can even be ne-

glected (i.e., P(t) ≈ 0) as compared with that for data transmission

[9,17].

The device is assumed to be capable of harnessing energy from

the environment and converting it to electrical energy. The energy

harvested in time slot t is assumed to be available for use in the

next time slot t + 1. However, the amount of harvestable energy in

a time slot is typically unpredictable and varies over time. To model

this dynamic nature, we use h(t) to denote the amount of harvestable

energy at time t. We also assume that h(t) takes values from some

finite set H, and 0 ≤ h(t) ≤ hmax where hmax is dependent on en-

vironmental factors for a given battery [5,7]. The device is able to

make a decision on energy harvesting by choosing e(t) ∈ [0, h(t)],

where e(t) denotes the amount of energy that is actually harvested at

time t.

2.5. Queue dynamics

Let Q(t) = (Qm(t), m ∈ {1, . . . , M}) be the data queue backlog vec-

tor in the device, where Qm(t) is the amount of type m sensory data

queued at the device in time slot t. We can capture the following

queueing dynamics of the device:

Qm(t + 1) = max[Qm(t) − θ(t)μm(t), 0] + θ(t)Rm(t) (4)

where Qm(0) = 0 for all m ∈ {1, . . . , M}. Accordingly, we can define

the stability constraint on the queues, which ensures that the average

queue length is finite. The queue stability can be defined as follows:

Q̄ � lim
T→∞

1

T

T−1∑
t=0

M∑
m=1

E{Qm(t)} < ∞ (5)

Similarly, E(t) denotes the energy queue size. Due to the constraint

on energy availability (3), the energy queue E(t) evolves according to



Download English Version:

https://daneshyari.com/en/article/448346

Download Persian Version:

https://daneshyari.com/article/448346

Daneshyari.com

https://daneshyari.com/en/article/448346
https://daneshyari.com/article/448346
https://daneshyari.com

