

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Photolytic reaction mechanism and impacts of coexisting substances on photodegradation of bisphenol A by Bi₂WO₆ in water

Chunying Wang a,b, Lingyan Zhu a,*, Mingcui Wei a, Peng Chen a, Guoqiang Shan a

^a College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Nankai University, Tianjin 300071, PR China ^b School of Resources and Environmental Engineering, Jiangxi University Science and Technology, No.86, Hongqi Ave., Ganzhou 341000, PR China

ARTICLE INFO

Article history:
Received 27 July 2011
Received in revised form
14 November 2011
Accepted 20 November 2011
Available online 26 November 2011

Keywords:
Bisphenol A
Hole oxidation
Anions
Cations
Humic acid
H₂O₂

ABSTRACT

Bi₂WO₆ displayed great photolytic degradation efficiency to bisphenol A (BPA) under simulated solar light irradiation but its reaction mechanism and the impacts of coexisting substances on the degradation remain unclear. In present study, the reaction mechanism was investigated using DMPO spin-trapping ESR spectra and experiments with scavengers of hydroxyl radicals (*OH) and holes. The results supported that hole oxidation mainly governed the photodegradation process. As a common humic substance in natural water, humic acid accelerated the degradation of BPA when its concentration was 1 mg/L, while the photodegradation was impeded with the increase of humic acid concentration in the range of 5-20 mg/L. Almost all anions, including NO₃, HCO₃, Cl⁻, SO₄²⁻ inhibited the degradation of BPA by Bi₂WO₆ and their inhibition effects followed the order of SO₄²-> Cl⁻ > HCO₃⁻ > NO₃⁻. Cations of Na⁺, K⁺, Ca²⁺ and Mg²⁺ displayed slight suppressing effect on BPA degradation mainly due to the impact of Cl⁻ coexisting in the solution. However, Cu²⁺ hindered the BPA photodegradation heavily. Fe³⁺ and H₂O₂ affected the photodegradation in a complicated way: they suppressed or promoted the photodegradation depending on their concentrations. This could be the result of competition between photolyitc hole generated by Bi₂WO₆ and •OH produced by Fe³⁺ or H₂O₂.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Bisphenol A [2,2-bis(4-hydroxyphenyl)propane, BPA] is a key building block material for epoxy and polycarbonate resins and has been widely used for commercial products (Staples et al., 1998). A large amount of BPA has been released into the aquatic environment. As one of the typical endocrine disrupting chemicals (Japan, 1998), BPA may cause various adverse effects on aquatic organisms even at low exposure levels (Tsai, 2006). Recently, many kinds of methods have been developed to remove or degrade BPA, and photocatalytic degradation is

a promising method due to its extremely efficient degradation rate, high mineralization efficiency and low toxigenicity, ideally producing CO₂ and H₂O as end products (Belgiorno et al., 2007). Among the various photocatalysts, TiO₂ has been widely used in degradation of organic chemicals in water and could completely mineralize BPA to CO₂ under UV irradiation (Chiang et al., 2004; Ohko et al., 2001). However, the main shortcoming of TiO₂ is that it only absorbs ultraviolet light no longer than 387.5 nm, which only accounts for about 4% of sunlight (Asahi et al., 2001; Linsebigler et al., 1995; Yu et al., 2003). Bismuth tungstate (Bi₂WO₆) was reported to be capable of degrading

^{*} Corresponding author. Tel.: +86 22 23500791; fax: +86 22 23503722. E-mail address: zhuly@nankai.edu.cn (L. Zhu).

chlorinated contaminants and azo dyes under visible light irradiation (Fu et al., 2005; Zhang et al., 2007; Zhao et al., 2007). In our previous research, Bi $_2$ WO $_6$ prepared by hydrothermal method displayed excellent photocatalytic activity and mineralization capacity to BPA under simulated solar light irradiation (Wang et al., 2010). It was speculated that BPA molecules were attacked by the photogenerated holes by Bi $_2$ WO $_6$ but not 'OH (Wang et al., 2010), which is the main oxidizing species in the photodegradation of contaminants (including BPA) by TiO $_2$ (Guo et al., 2009; Kaneco et al., 2004; Watanabe et al., 2003). However, no direct evidence was provided to support this assumption.

In most of the studies about photodegradation of BPA, initial $concentration \, of \, BPA, do sage \, of \, photocataly st \, and \, pH \, of \, reaction$ solution are usually considered as the factors which could affect photodegradation efficiency (Ahmed et al., 2011; Daskalaki et al., 2011; Tao et al., 2011; Wang et al., 2010). In real application, photodegradation could also be affected by many other factors and one of them is the coexisting substances in natural aquatic system, such as humic acid, inorganic metal cations and anions. Humic substances are one of the principal organic constituents in natural water with concentrations in the range of several mg/ L to several tens of mg/L. Chen et al. reported that humic acid as a photosensitizer promoted the mineralization of dimethoate by TiO₂ under UV irradiation (Chen et al., 2010). Inorganic ions, such as cations of Na⁺, K⁺, Ca²⁺, Mg²⁺, Cu²⁺ and Fe³⁺, and anions of NO_3^- , HCO_3^- , Cl^- , SO_4^{2-} are also very common in natural water. These inorganic ions in water would affect the degradation rate of organic pollutants and even their degradation mechanisms (Abdullah et al., 1990; Chen et al., 2001).

Hydrogen peroxide (H_2O_2) is a strong oxidative reagent and commonly used to enhance the rates of photocatalytic oxidation reactions (Chan, 2001). It was reported that H_2O_2 enhanced the oxidation by TiO₂. It remains unclear if H_2O_2 presents any impacts on the photocatalytical reaction by Bi_2WO_6 given that it has different photocatalytic reaction mechanism from TiO₂.

The main objectives of this paper are in two aspects: firstly, to disclose the degradation mechanism of BPA by $\rm Bi_2WO_6$ under simulated solar irradiation using *OH or hole trapping reagents, such as methanol, isopropanol, KI, and electron spin resonance (ESR) analysis. Secondly, to investigate the impacts of the following coexisting substances on the photocatalytic degradation of BPA by $\rm Bi_2WO_6$: humic acid, inorganic anions (NO $_3^-$, HCO $_3^-$, Cl $_3^-$, SO $_4^{2-}$), inorganic cations (Na $_3^+$, K $_3^+$, Ca $_3^{2+}$, Mg $_3^{2+}$, Cu $_3^{2+}$, Fe $_3^{3+}$) and H $_2$ O $_2$. The results would provide useful guidance when $\rm Bi_2WO_6$ is used in real applications.

2. Materials and methods

2.1. Reagents

Bi₂WO₆ catalyst was prepared by hydrothermal method using bismuth nitrate pentahydrate (Bi(NO₃)₃·5H₂O) and sodium tungstate dehydrate (Na₂WO₄·2H₂O). The detailed synthesized process refers to our previous study (Wang et al., 2010). The nitrone spin trap 5,5-dimethyl-1-pryrroline-N-oxide (DMPO) and humic acid were purchased from Sigma—Aldrich (Shanghai) Trading Co., Ltd. P25 TiO₂ particles were purchased from Degussa Co., Ltd. Cations of Na⁺, K⁺, Ca²⁺, Mg²⁺, Cu²⁺ and Fe³⁺ were used in their chloride salts, and anions of NO₃, HCO₃, Cl⁻,

 ${\rm SO}_2^{2-}$ were used in their sodium salts. All these salts, ${\rm H_2O_2}$ (30 wt %) and KI were analytical grade and purchased from Chemical Technology Co., Ltd., Tianjin, China. Methanol and isopropanol were from Concord Technology Co., Ltd., Tianjin, China.

2.2. Photocatalytic reaction

The photocatalytic reaction was carried out in a XPA-7 photocatalytic reactor (Xujiang Electromechanical Plant, Nanjing, China) equipped with 10 mL quartz test tubes. Simulated sunlight irradiation was provided by an 800 W xenon lamp (Institute of Electric Light Source, Beijing), and the intensity of the lamp was 13.2 mW/cm². The reaction system was cooled by circulating water and maintained at room temperature. The initial concentration of BPA was 20 mg/L (0.088 mmol/L), and the dosage of Bi₂WO₆ was 1.0 g/L. The pH of the solution was 6.2. The target substances, including humic acid, inorganic anions, inorganic cations and H2O2 were added at predetermined concentrations. Before irradiation, the suspension was magnetically stirred in dark for 30 min to ensure adsorption equilibrium of BPA on the catalysts. The lamp was then turned on and the photodegradation was initiated. Approximately 0.5 mL of reaction solution was taken at given time intervals and filtered through $13 \text{ mm} \times 0.45 \,\mu\text{m}$ membrane for BPA analysis by high performance liquid chromatography (HPLC). The removal efficiency (R) of BPA under various conditions was calculated as follows:

$$R = (C_0 - C)/C_0 \times 100\% \tag{1}$$

where C_0 and C represent the initial and residual concentrations in the photocatalytic reaction solution. All the experiments were preformed in triplicate and the mean values were reported. All the data with standard deviation were listed in Table S1 in Supplementary data.

The settings for the ESR spectrometer (Bruker EMX-6/1, Germany) were as follows: center field, 3514.82 G; sweep width, 120.00 G; microwave frequency, 20.02 mW; modulation frequency, 100 kHz; power, 1.25 G. In the catalyst/DMPO solution, DMPO concentration was 10 mmol/L and the catalyst amount was 1.0 g/L.

The pH of the point of zero charge (pH $_{\rm PZC}$) was measured by pH drift method (Lopez-Ramon et al., 1999): 20 mL of a 0.01 mol/L NaCl solution was placed in a jacketed titration vessel, thermostatted at 298 K, and N $_{\rm 2}$ was bubbled through the solution to stabilize the pH by preventing the dissolution of CO $_{\rm 2}$. The pH was then adjusted to successive initial values between 2 and 12, by adding either HCl or NaOH and 0.1 g Bi $_{\rm 2}$ WO $_{\rm 6}$ catalyst was added to solution. The final pH, reached stable after 48 h, was measured and plotted against the initial pH. The pH at which the curve crossed the line pH (final) = pH (initial) was taken as the pH $_{\rm PZC}$ of Bi $_{\rm 2}$ WO $_{\rm 6}$.

3. Results and discussion

3.1. Photodegradation mechanism of Bi₂WO₆

ESR spin-trap with DMPO is a useful technique employed to monitor reactive oxygen species generated in the reaction system. The ESR spectra of the reaction solutions using P25

Download English Version:

https://daneshyari.com/en/article/4483796

Download Persian Version:

https://daneshyari.com/article/4483796

<u>Daneshyari.com</u>