

Available at www.sciencedirect.com

Review

Dissolved air flotation and me

James K. Edzwald*

Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA 01003-9293, USA

ARTICLE INFO

Article history: Received 22 October 2009 Received in revised form 21 December 2009 Accepted 23 December 2009 Available online 6 January 2010

Keywords:
Air bubbles
Coagulation
Dissolved air flotation
Drinking water
Models
Particles
Pathogens

ABSTRACT

This paper is mainly a critical review of the literature and an assessment of what we know about dissolved air flotation (DAF). A few remarks are made at the outset about the author's personal journey in DAF research, his start and its progression. DAF has been used for several decades in drinking water treatment as an alternative clarification method to sedimentation. DAF is particularly effective in treating reservoir water supplies; those supplies containing algae, natural color or natural organic matter; and those with low mineral turbidity. It is more efficient than sedimentation in removing turbidity and particles for these type supplies. Furthermore, it is more efficient in removing Giardia cysts and Cryptosporidium oocysts. In the last 20 years, fundamental models were developed that provide a basis for understanding the process, optimizing it, and integrating it into water treatment plants. The theories were tested through laboratory and pilot-plant studies. Consequently, there have been trends in which DAF pretreatment has been optimized resulting in better coagulation and a decrease in the size of flocculation tanks. In addition, the hydraulic loading rates have increased reducing the size of DAF processes. While DAF has been used mainly in conventional type water plants, there is now interest in the technology as a pretreatment step in ultrafiltration membrane plants and in desalination reverse osmosis plants.

© 2009 Elsevier Ltd. All rights reserved.

Contents

1.	Intro	ductory	remarks	2078
	1.1.	A not	so personal journey	2079
2.	Description and use			
	2.1.	2.1. General description of a dissolved air flotation water plant		
	2.2.	Develo	pments	2081
		2.2.1.	Brief history of development and use	2081
		2.2.2.	Trends in DAF	2082
3.	Fundamentals pertaining to air bubbles and the bubble suspension			2082
	3.1.	Solubility of air		2082
		3.1.1.	Solubility of air in water for atmospheric air composition	2082
		3.1.2.	Solubility of air in the recycle water exiting the saturator	2082

^{* 4} Hillcrest Drive, Potsdam, NY 13676, USA. Tel.: + 1 315 261 4186. E-mail address: edzwald@ecs.umass.edu

	3.2.	Bubble properties – shape and size	. 2083	
	3.3.	Bubble–bubble interactions and forces	. 2084	
	3.4.	Bubble suspension concentrations in the contact zone	. 2085	
4.	Princ	ciples pertaining to particle collisions and attachment to bubbles	. 2085	
	4.1.	Modeling approaches	. 2086	
	4.2.	Heterogeneous flocculation type models	. 2086	
		4.2.1. Turbulent flocculation model	. 2086	
		4.2.2. Particle–bubble trajectory based flocculation models	. 2088	
	4.3.	White water bubble blanket model	. 2090	
		4.3.1. Discussion of contact zone variables	. 2091	
		4.3.2. Discussion of flotation tank variables	. 2093	
5.	Principles on rise velocities and separation zone clarification performance			
	5.1.	Bubble and floc-bubble aggregate rise velocities	. 2094	
	5.2.	Separation zone performance	. 2094	
		5.2.1. Ideal case: conventional rate DAF	. 2094	
		5.2.2. Flow pattern in the separation zone and stratified flow	. 2095	
		5.2.3. Computational fluid dynamics (CFD)	. 2096	
6.	Laboratory, pilot-plant, and full-scale plant performance			
	6.1. Water quality and source water types			
		6.1.1. Turbidity supplies	. 2097	
		6.1.2. Removals of algae	. 2098	
		6.1.3. Removals of Giardia and Cryptosporidium		
		6.1.4. Integration of DAF into a water treatment plant		
7.	State of the technology			
	7.1.	Flotation over filtration		
	7.2.	High rate DAF systems		
	7.3.	Design and operating parameters		
8.	Research needs			
	8.1.	Bubble production and energy		
	8.2.	Bubble-bubble interaction		
	8.3.	Bubble–particle interaction	. 2101	
	8.4.	8		
	8.5.			
	8.6.	Tastes and odors		
	8.7.	DAF as a pretreatment process ahead of membranes		
	Acknowledgements			
	-	ation Notation		
	Refe	rences	. 2103	

1. Introductory remarks

If I have seen a little further it is by standing on the shoulders of Giants. Isaac Newton

The readers of the journal appreciate that researchers stand upon the shoulders of those who came before them. The foundation of our contributions lies with others; we are a community of scholars. This is true here. Thus, a better title of the paper would be to replace and me with a not so personal journey. A major part of my research journey occurred while serving as a professor where I had the good fortune to work with many outstanding graduate students who participated and contributed to the research on dissolved air flotation (DAF), often to a greater extent than I. A philosophy I tried to follow was to base my research on sound scientific principles and to apply them to important applications in providing safe drinking water. The applied research studies led me to work

with professionals at water works, consulting engineering firms, and process engineering companies. These folks contributed greatly to the journey.

This was not an easy paper to write. As scientists we are educated to describe our research in an objective, nonpersonal way. To add personal material is foreign to my nature. I therefore present in Section 1.1 a brief accounting of how I got started on DAF research, mention briefly some key research projects in my career, and identify some colleagues who helped me on my research journey. The remainder of the paper deals with the primary objective of the paper, which is to provide a scientific review of DAF. I have tried my best to be critical and objective of what we know about the subject, but it is my evaluation of the topic and so some of the material reflects my interpretation and assessment. I begin with Section 2 which contains a description of DAF and developments in its use for drinking water treatment. I then proceed with a scientific review of the following subjects: Section 3 on

Download English Version:

https://daneshyari.com/en/article/4484019

Download Persian Version:

https://daneshyari.com/article/4484019

<u>Daneshyari.com</u>