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a b s t r a c t

The solids-flux theory has been used for half a century as a tool for estimating concen-

tration and fluxes in the design and operation of secondary settling tanks during stationary

conditions. The flux theory means that the conservation of mass is used in one dimension

together with the batch-settling flux function according to the Kynch assumption. The flux

theory results correspond to stationary solutions of a partial differential equation,

a conservation law, with discontinuous coefficients modelling the continuous-sedimen-

tation process in one dimension. The mathematical analysis of such an equation is intri-

cate, partly since it cannot be interpreted in the classical sense. Recent results, however,

make it possible to partly confirm and extend the previous flux theory statements, partly

draw new conclusions also on the dynamic behaviour and the possibilities and limitations

for control. We use here a single example of an ideal settling tank and a given batch-

settling flux in a whole series of calculations. The mathematical results are adapted

towards the application and many of them are conveniently presented in terms of oper-

ating charts.

ª 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The complexity of the secondary settling tank (SST) within the

activated sludge process is not only known to operators of the

plants, but also to researchers. Interesting nonlinear

phenomena are shown even if simplifying idealizations are

made in models. The same experiences have been made in

other fields, since clarifier–thickener units are also used in the

mineral, chemical, pulp-and-paper and food industries.

Several simulation models have been suggested for clari-

fier–thickener units. This has been a natural development,

particularly for the SST, because of its presence in the acti-

vated sludge process and the fact that there are reliable

simulation models for the biological reactor.

However, even if reliable simulation programs are devel-

oped, they do not give general rules on how to control the

process. Then one has to go back and investigate properties of

the basic physical laws that govern the process. Such a law is

the conservation of mass, which can be written exactly as an

equation with integrals. Such a continuity equation can be

reformulated and written equivalently as a partial differential

equation (PDE), also called a conservation law, provided that it

is interpreted in the so-called weak sense. This is a mathe-

matical terminology, which means that the PDE is only

a convenient symbol for an equation containing integrals. For

example, a solution of a PDE may have discontinuities, despite

the fact that such are not differentiable in the ordinary sense.

This sometimes causes misunderstandings. Conclusions, or

numerical algorithms, derived directly from the PDE may thus

be incorrect.

Although different ways of tackling the problem have been

presented during half a century by water researchers, chem-

ical engineers, applied mathematicians, etc., a common plat-

form has been the celebrated paper by Kynch (1952), which we
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may consider to be the origin of the solids-flux theory. Kynch’s

constitutive assumption is that the local settling velocity is

a function of the concentration only, vsettl(X ), and it is

decreasing. Batch sedimentation in a column can in one

dimension be described by the conservation law (interpreted

in the weak sense)

vX
vt
þ vfbðXÞ

vx
¼ 0;

where fb(X )¼Xvsettl(X ) is the batch-settling flux function. It is

assumed that this function has an inflection point and

a typical graph is shown in Fig. 1. Kynch also showed

how solutions could be constructed by the method of

characteristics.

Fundamental results of graphical constructions by using

the flux curve fb(X ) for obtaining concentrations in steady-

state operation were presented by Jernqvist (1965a–c). Unfor-

tunately, Jernqvist’s results seem not to have reached other

researchers. Similar developments, but not as extensive, were

presented in the 1960s onwards with concepts such as the

operating line, the limiting flux and the state point (pivot

point, feed point), see e.g. Ekama et al. (1997), Diehl (2001) and

references therein.

Interpretations concerning clarification failure and control

were made by Keinath et al. (1977); Laquidara and Keinath

(1983); Keinath (1985) and a chart describing steady states was

presented by Lev et al. (1986). Later references also showed the

need for the flux theory for describing steady states of the

process (e.g. Chancelier et al., 1997a; Ekama and Marais, 2004;

Kaushik and Murthy, 2002; Lynggaard-Jensen and Lading,

2006; Narayanan et al., 2000; Wett, 2002; Wilén et al., 2004).

At the same time, one should be aware of the inherent

limitations of a one-dimensional ideal model together with

only one constitutive assumption (Kynch’s). The complexity

of two- and three-dimensional models makes, however,

a one-dimensional model still interesting for the design of

full-scale SSTs. Ekama and Marais (2004) then recommend

a safety factor (reduction factor) to account for the hydraulic

non-idealities.

A first-order PDE model of the entire SST was presented

independently by Chancelier et al. (1994) and Diehl (1995,

1996). It is a one-dimensional model together with Kynch’s

constitutive assumption. Hence, solutions of the PDE are physi-

cally correct solutions within the flux theory. Consequently, the

flux theory can be confirmed and extended in a natural way

within the context of PDE theory. This was done by Chancelier

et al. (1997a,b). It is the aim of the present paper to present

further results in this direction. We emphasize that ‘a physi-

cally correct solution’ refers to the physical law, or equiva-

lently, the PDE and the constitutive assumption. To what

extent such a solution approximates the real concentrations

of an SST is another issue not dealt with here.

The inlet and outlets of the SST cause differing fluxes and

conditions, which imply that coefficients in the PDE are space

discontinuous. These discontinuities imply a severe nonlinear

feature in addition to the nonlinear sedimentation–consoli-

dation process itself. This has implied that basic research in

mathematics has had to be carried out in order to obtain

a correct description of the process and to develop reliable

numerical methods, see the special issue on conservation

laws with discontinuous flux with the editors Bürger and

Karlsen (2008).

Nomenclature

A cross-sectional area [m2]

D depth of thickening zone [m]

D ‘dangerous’ region in operating chart

E excess flux in steady state [kg/(m2 h)]

F total flux function in Eq. (1) [kg/(m2 h)]

H height of clarification zone [m]

O overloaded region in operating chart

Q volumetric flow rate [m3/h]

Qmax
u maximum bound on control variable, cf. Eq. (10)

[m3/h]

Qmin
u minimum bound on control variable, cf. Eq. (11)

[m3/h]

S ‘safe’ region in operating chart

U underloaded region in operating chart

X total suspended solids concentration [kg/m3]

Xinfl inflection point of flux functions [kg/m3]

Xmax maximum concentration [kg/m3]

XM local maximum point of f [kg/m3]

XM local minimum point of f [kg/m3]

Xm concentration satisfying Xm�Xinfl and

f(Xm)¼ f(XM) [kg/m3]

Xmin
u minimum bound on underflow concentration, cf.

Eq. (9) [kg/m3]

f flux function in thickening zone [kg/(m2 h)]

fb batch-settling flux function [kg/(m2 h)]

flim limiting flux function [kg/(m2 h)]

fthick flux in thickening zone in steady state [kg/(m2 h)]

[ line in operating chart

p point in operating chart

q volumetric flux [m/h]

s source term, flux fed to SST [kg/(m2 h)]

t time [h]

vsettl settling velocity [m/h]

x depth from feed level [m]

y flux axis in operating chart [kg/(m2 h)]

Greek letters

L region in steady-state control chart

d Dirac delta distribution [1/m]

q Xu/Xf thickening factor [–]

Subscripts

0 initial value at t¼ 0

cl clarification zone

e effluent

f feed (inlet)

th thickening zone

u underflow

Superscripts
¼ related to inflection point

˜
related to critically loaded SST

ˆ related to optimal operation
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