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a b s t r a c t

The solution of a number of environmental models is incorrectly obtained by linearizing

a nonlinear analytical solution. The linearization can yield a model that includes a common

variable on both sides of the equal sign (i.e., ratio analysis), which in calibration causes

highly inflated goodness-of-fit statistics. These specious practices continue likely because

of tradition, i.e., ‘‘that is the way it is done’’. Goodness-of-fit statistics that result from these

erroneous practices do not accurately reflect the actual prediction accuracy of the model.

Additionally, the linearly calibrated coefficients can be poor estimators of the true coeffi-

cients. The goal of this paper is to demonstrate the pitfalls of models based on ratio anal-

yses. Several environmental models are used to demonstrate the erroneous procedure.

Monte Carlo simulation is used to show the distribution of the true correlation coefficient

and compare it to the distribution that results from the erroneous linearization. Lineariza-

tion can produce correlation coefficients above 0.9 when the actual correlation is near 0.

Nonlinear least squares algorithms can be used to more accurately fit nonlinear data to

nonlinear models.

ª 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Knowledge of modeling techniques has not kept pace with the

growth of technical knowledge or technology itself. Methods

of measurement have improved significantly over the last

decade, yet specious (i.e., deceptively attractive) modeling

methods applied to highly accurate measurements will not

necessarily produce accurate analyses or designs. While we

certainly want to continue with improvements in both

measurement and technology, efforts must be made to

upgrade the general understanding of methods of modeling,

i.e., the extraction of information from measured data.

Ratio analyses of correlation and regression are one

example of poor modeling practices. These problems were

recognized in 1932 by Karl Pearson, the individual credited

with many of the earlier advances of least squares and corre-

lation (1932).

In general terms, ratio analyses involve combining random

variables into a ratio (or a product), performing statistical

analyses with the ratio, and then separating the ratio for the
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purpose of estimating one of the variables that was used to

form the ratio. For example, assume y and x are two random

variables, and we have a set of measurements on y and x

that suggest a poor degree of correlation between the two vari-

ables. However, the formation of a ratio, such as y/x, produces

a model that seemingly is highly accurate (i.e., the correlation

coefficient is high) when regressed on x. As a simple linear

case, the model might be y/x¼ aþ bx. Then a predicted value

of y is obtained by predicting the ratio y/x with a new value

of x, and then multiplying the predicted value of y/x by x to

yield a predicted value of y. A y/x vs. x regression will yield

a high correlation, but unfortunately the correlation coeffi-

cient reflects the accuracy of estimates of y/x, but not the

accuracy of estimates of y alone. Actually, predicted values

of y from such analyses can be quite inaccurate. The high

correlation coefficient was the result of x appearing on both

sides of the prediction equation. It should be obvious that 1/

x and x would be highly correlated, which yields a specious

measure of the accuracy of predictions of y.

Articles, as well as a book, demonstrating the speciousness

of such analyses have been published in many of the leading

journals from a variety of disciplines (Benson, 1965; Chayes,

1972; Hao and Neethling, 1987; Kenney, 1982; Kritzer, 1990).

Failure to recognize the pitfalls of self-correlation and self-

regression has led to many inaccurate, may be misleading,

results.

Pearson (1932) and Benson (1965) wrote about the

problem of correlation of ratios. Ratio models also result

from the linearization of a nonlinear relationship. This is

the case in which scientific theory leads to a nonlinear

model that includes one or more coefficients that must be

calculated, i.e., fitted to data. This paper presents examples

of these theory-based nonlinear relationships (the Michaelis–

Menten or Monod model, an adsorption kinetic rate equa-

tion, and the sludge filtration equation) and one example

of a linearized empirically based relationship (the sediment

rating curve). All of these models have been applied using

erroneous linearization because the model developer may

not be aware of numerical methods of fitting coefficients of

a nonlinear model. Consequently, the modeler rearranges

the nonlinear model to a linear form, i.e., y¼ aþ bx, that

can be fitted with traditional analytical least squares regres-

sion. After linearizing the nonlinear model, the dependent y

variable is actually a ratio.

The intent herein is to demonstrate the speciousness of

ratio analyses and present an alternative to the procedure

that directs individuals away from the antiquated modeling

practices of forming ratios and linearization.

2. Examples of specious transformations

In this section, a number of commonly used examples that

lead to specious linearization will be provided. Specific anal-

yses of the more common examples will be provided in subse-

quent sections.

Kinetic rate modeling: consider the Michaelis–Menten enzy-

matic equation (Michaelis and Menten, 1913), or Monod

growth model (Monod, 1949):

m ¼ mxS
Kþ S

(1)

where values of m and S are measured and mx and K are fitting

coefficients. By taking the reciprocal of both sides of Eq. (1) and

rearranging, the following form results:

S
m
¼ K

mx

þ S
mx

(2)

This is known as the Hanes plot (Hanes, 1932). Letting

y¼ S/m, x¼ S, a¼ K/mx, and b¼ 1/mx, yields the traditional linear

equation:

y ¼ aþ bx (3)

Values of a and b are easily fitted with measured values of S

and m. The values of the fitting coefficients K and mx are easily

retransformed by

mx ¼ 1=b (4)

and

K ¼ a=b (5)

A major problem with this regression analysis is that the

correlation coefficient based on the regression of S/m on S

does not reflect the accuracy of predicted values of m. In fact,

the correlation coefficient is quite likely to be a highly inflated

indicator of the accuracy of predictions of m. It likely indicates

only that S on the left-hand side is related to S on the right-

hand side of Eq. (2).

Adsorption modeling: the following is another example of

linearization and typical regression calculations. The

following kinetic rate equation is used for adsorption studies

with the boundary condition that qt¼ 0 at t¼ 0 (Lagergren,

1898):

dqt

dt
¼ k

�
qe � qt

�2
(6)

in which qt is the is the mass of divalent metal ion on the

surface of the sorbent at any time t, and k and qe are constants

with the former being the rate constant of sorption and the

latter being mass of a divalent metal ion sorbed at equilib-

rium. The differential equation (6) has the following analytical

solution:

qt ¼
t�

1=kq2
e

�
þ
�
t=qe

� ¼ tqe�
1=kqe

�
þ t

(7)

For a given set of (qt, t) measurements, values of k and qe are

required. One approach to this and similar nonlinear analyses

has been to linearize the solution of Eq. (7). One linear model

for solving Eq. (7) is:

t
qt
¼ 1

kq2
e

þ 1
qe

t (8)

Letting y¼ t/qt and x¼ t, Eq. (8) has the linear model form

y¼ aþ bx, which is easily solved by least squares linear regres-

sion. Once the coefficients a and b are estimated with paired

measurements (qt, t), the values of k and qe are estimated using

the regression values of a and b. Generally, even if qt and t are

not highly correlated, t/qt and t are very highly correlated

because the t of the t/qt ratio has a perfect correlation with t.

Variation in qt may keep the correlation coefficient from being

exactly 1, but it is often very high because of the large varia-

tion in the sample values of t. The correlation coefficient for
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