
Design and analysis of techniques for mapping virtual networks
to software-defined network substrates

Mehmet Demirci ⇑, Mostafa Ammar
School of Computer Science, Georgia Institute of Technology, Atlanta, Georgia 30332, United States

a r t i c l e i n f o

Article history:
Received 30 December 2013
Received in revised form 26 February 2014
Accepted 12 March 2014
Available online 20 March 2014

Keywords:
Network virtualization
Virtual network embedding
Software-defined networking

a b s t r a c t

Software-defined networking has emerged as a powerful approach to improve the customizability and
flexibility of networks. In this work, we focus on virtualization in the realm of software-defined network-
ing, and study how to embed virtual networks in this environment. Virtual network embedding is an
important problem because intelligent embedding can lead to better performance and a more efficient
allocation of network resources compared to random mapping. In software-defined networking, the pres-
ence of a central controller is a complicating factor, and customizable routing and differences in resource
sharing present new opportunities and challenges. We identify two aspects of virtual network embedding
in software-defined networks: virtual node and link mapping, and controller placement. We tackle these
problems together, developing techniques to perform embedding with two goals: balancing the load on
the substrate network and minimizing controller-to-switch delays. We evaluate our techniques with sim-
ulation and Mininet emulation, and show that they are able to optimize for one of the above objectives
while keeping the other within reasonable bounds.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Over the past few years, software-defined networking (SDN)
has emerged as a promising technology. By separating the control
plane from the data plane, SDN facilitates network experimenta-
tion and allows for optimizing switching/routing policies. The
forwarding planes in software-defined networks are managed by
remote processes called controllers. OpenFlow [1] was proposed
and has been extensively used as a uniform interface between
the control and data planes in SDN.

Multiple tenants can share the underlying SDN infrastructure
through virtualization. One method of virtualization in SDN is
FlowVisor [2], a special purpose OpenFlow controller that can cre-
ate slices of network resources and place each slice under the con-
trol of a different OpenFlow controller. FlowVisor slices the
network along multiple dimensions: topology, bandwidth, switch
CPU, and the set of traffic under the control of the slice, i.e., its
flowspace. Each slice has a slice policy defining its resources and
the controller associated with it. A more recent solution for virtu-
alization in SDN is FlowN [3], which will be discussed in Section 2.
In this work, we assume FlowVisor as the method of virtualization
since it is well-documented, in widespread use in experimental

environments such as GENI [4], and available in emulation envi-
ronments such as Mininet [5].

FlowVisor is interjected between multiple OpenFlow slice con-
trollers and OpenFlow switches acting as the data plane. It inter-
cepts messages between the control and data planes in both
directions, and rewrites them in compliance with the slice policy
of the corresponding slice. FlowVisor uses a variety of mechanisms
(details are in [2]) for different network resources to ensure isola-
tion between slices. Switch CPU is identified as the most critical re-
source as it is the most easily exhausted, but there are methods to
divide and isolate link bandwidth and flow entry space as well.

Fig. 1 illustrates two slices sharing the same network substrate.
Each slice has its own view of the topology, which we call the vir-
tual topology (VT) of the slice, depending on the switches it con-
tains: Alice’s VT is ABDE, and Bob’s VT is ABCD. Switches that are
added into both slices (like A, B, and D) need to allocate CPU power
and flow entries between these slices. Similarly, if a link is being
shared between multiple slices (like AB and BD), its bandwidth
must be divided to accommodate the flows belonging to each slice.
Note that the dashed lines showing the controller-to-switch
communications constitute a conceptual representation. The exact
paths for control traffic will be determined by the physical
locations of the controllers.

Slices of the network can be used for many different purposes
depending on what the owners are trying to accomplish. Services
or experiments that run on these slices may display a wide variety

http://dx.doi.org/10.1016/j.comcom.2014.03.008
0140-3664/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +1 (404) 3129897.
E-mail addresses: mdemirci@gatech.edu (M. Demirci), ammar@cc.gatech.edu

(M. Ammar).

Computer Communications 45 (2014) 1–10

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/locate /comcom

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2014.03.008&domain=pdf
http://dx.doi.org/10.1016/j.comcom.2014.03.008
mailto:mdemirci@gatech.edu
mailto:ammar@cc.gatech.edu
http://dx.doi.org/10.1016/j.comcom.2014.03.008
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom


of resource requirements. We can think of a slice along with its
controller as a virtual network (VN) in SDN. As VNs get bigger
and the number of VNs increases, resource contention may become
a problem.

VN embedding1 within a network virtualization environment,
where substrate network providers are decoupled from VN providers
that deploy and operate the VNs [6,7], is a well-known problem. It is
an important NP-hard problem because suboptimal mappings can
cause bad performance and/or higher operating cost. Solutions that
strive for well-balanced and resource-efficient VN mappings have
been proposed by researchers [8–10].

In this work, we tackle the problem of designing embedding tech-
niques for VNs in the SDN environment. While some of the previous
VN embedding solutions may be applicable to SDN virtualization,
some differences inherent in SDN call for different definitions and
approaches. Firstly, each VN on an SDN-based substrate possesses
its own controller, and there are requirements and considerations
that come with the existence of this controller. The controller is
responsible for organizing the operation of the VN by sending rout-
ing updates, traffic engineering policies etc. and needs to react
quickly to faults in the network. Therefore, it must be able to com-
municate effectively to all the switches that are part of the VN, so
any VN embedding effort needs to make sure all controller-to-switch
channels avoid congestion and high delays. Furthermore, the ease of
customizing packet routes in SDN presents an additional degree of
freedom in VN embedding. For these reasons, studying VN embed-
ding in software-defined networks presents different challenges
from other network virtualization environments:

i. The placement of the controller is important for the above
stated reasons, so it should be treated as a special node by
the VN embedding method.

ii. We have more control over the routes in the substrate, so VN
embedding can take advantage of this flexibility to fine-tune
solutions.

iii. As we will explain in Section 3, differences in SDN resource
sharing from that in traditional networks call for modifica-
tions to previous VN embedding efforts.

The systems that we investigate in this work are those with
many tenants running a number of VNs with varying sizes, func-
tions and requirements. The mapping of the virtual components
to substrate components and the placement of the controllers are
both important variables influencing the performance of the VNs
in such a system. Efficient utilization of networks resources, low
risk of congestion, reliability and fast response are all desirable
properties. To this end, we identify two simple goals that guide
our design: balancing the load on substrate nodes and links, and
maintaining low delay between controllers and switches in all VNs.

The contributions of this work can be summarized as follows.

i. We identified virtualization properties unique to the SDN
environment and discussed how these properties should
affect VN embedding efforts. Specifically, we argued that
the placement of the controller for each VN should be a part
of embedding due to the critical mission of the controller
and the necessity for the controller to have a fast communi-
cation channel to the switches that it controls.

ii. We developed two embedding techniques with different pri-
orities: the first method focuses on balancing the stress on
substrate components while keeping the delays between
controllers and switches within bounds. The second method
strives to minimize controller-to-switch delays while limit-
ing the stress on substrate components.

iii. Our stress-balancing embedding technique is derived from
previous work [8], but we modified the definitions of node
and link stress to account for the presence of control traffic,
and made adjustments to treat the controller as a special node.

Fig. 1. Two FlowVisor slices sharing a substrate of OpenFlow-enabled switches.

1 VN embedding and VN mapping are being used interchangeably throughout this
paper.

2 M. Demirci, M. Ammar / Computer Communications 45 (2014) 1–10



Download English Version:

https://daneshyari.com/en/article/448690

Download Persian Version:

https://daneshyari.com/article/448690

Daneshyari.com

https://daneshyari.com/en/article/448690
https://daneshyari.com/article/448690
https://daneshyari.com

