
Hazard avoidance in wireless sensor and actor networks

Ramanuja Vedantham *, Zhenyun Zhuang, Raghupathy Sivakumar

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA

Available online 6 March 2006

Abstract

A typical wireless sensor network performs only one action: sensing the environment. Our requirement for intelligent interaction with
the environment has led to the emergence of Wireless Sensor and Actor Networks (WSANs), where a group of sensors, actors, and a
central coordination entity (sink) linked by wireless medium perform distributed sensing and acting tasks.

In order to provide tight coupling between sensing and acting, an effective coordination mechanism is required among sensors and
actors. In this context, we identify the problem of ‘‘hazards’’, which is the out-of-order execution of queries and commands due to a lack
of coordination between sensors and actors. We identify four types of hazards and show with an example application, the undesirable
consequences of these hazards. We also identify and enumerate the associated challenges in addressing hazards. In this context, we dis-
cuss the basic design needed to address this problem efficiently. We propose a distributed and fully localized hazard-free approach that
addresses the problem and the associated challenges based on the design. Through analytical studies and simulations we study the per-
formance of the proposed solution and two basic strategies, and show that the proposed solution is efficient for a variety of network
conditions.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Wireless sensor and actor networks; Correctness; Sink-to-sensors data delivery; Simulations; Performance evaluation

1. Introduction

Wireless Sensor Networks (WSNs) have a wide variety
of applications in civilian, medical, and military applica-
tions. However, the nodes in such a network are limited
to one type of action: sensing the environment. With
increasing requirements for intelligent interaction with
the environment, there is a need to not only perceive but
also control the monitored environment. This has lead to
the emergence of a new class of networks capable of per-
forming both sensing and acting on the environment,
which we refer to as Wireless Sensor and Actor Networks
(WSANs).

The architecture for a WSAN can be seen as an exten-
sion of a wireless sensor network where the sensors collect
information of the environment and report it to the sink,

which processes the data and issues commands to the
actors to act on the environment [1]. Thus, in WSANs,
the nature of actions performed by the nodes in the net-
work evolves to both sensing and operating on the environ-
ment. Sensors are typically low-power devices with limited
sensing, computation, and wireless communication capa-
bilities [2]. However, since ‘‘acting’’ (e.g., heating) is likely
to be a more complex and energy consuming activity than
sensing (e.g., temperature reading), it is reasonable to
assume that actors are more expensive resource-rich nodes
equipped with better processing capabilities, higher trans-
mission powers, large acting range, and longer battery life.
For this reason, the number of sensors deployed in a
WSAN field will likely be much more than the number of
actors.

The evolution from WSNs, which can be thought of to
perform only read operations, to WSANs, which can per-
form both read and write operations, introduces unique
and new challenges that need to be addressed. In this
paper, we address one such challenge. Consider a simple

0140-3664/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2006.02.012

* Corresponding author.
E-mail addresses: ramv@ece.gatech.edu (R. Vedantham), zhenyun@

ece.gatech.edu (Z. Zhuang), siva@ece.gatech.edu (R. Sivakumar).

www.elsevier.com/locate/comcom

Computer Communications 29 (2006) 2578–2598

mailto:ramv@ece.gatech.edu
mailto:zhenyun@ ece.gatech.edu
mailto:zhenyun@ ece.gatech.edu
mailto:siva@ece.gatech.edu


example of a WSAN that uses fire-detector sensors along
with water-sprinkler actors. Assume that the sink has
issued a command directive1 C to the actors to sprinkle
water in response to sensor feedback about a fire. Now,
after a certain period of time t, consider the sink to issue
a query directive Q to check if the fire has been extin-
guished. If, for a certain region in the WSAN, Q is deliv-
ered and executed before C by the network, the
corresponding response by the sensors – that the fire still
exists – will trigger an unnecessary reaction by the sink in
the form of more directives to the actors to sprinkle more
water. The execution of directives in an order different
from what the sink intended it to be has thus resulted in
an undesired outcome. While the undesired outcome in
the above example is merely the wastage of water, depend-
ing upon the nature of the application, such outcomes can
even be catastrophic (e.g., poison gas actors where one
dose of the gas merely invalidates subject, but two doses
can kill).

We refer to such problems where the execution order of
directives is different from what the sink intends or expects
it to be as directive hazards2. For brevity, we refer to the
problem as simply hazards in the rest of the paper. Essen-
tially, the inherent dependency between the actions per-
formed by the sensors, and those performed by the
actors, imposes a need for the sink to have control over
the order in which directives will be executed, to ensure
correctness of operations.

In developing solutions to avoiding hazards, two addi-
tional challenges need to be addressed: (i) The rate of exe-
cution of the directives, the directive execution throughput,
has to be maximized in order to serve applications that
are real-time. Note that most WSAN applications are likely
to have real-time requirements. Revisiting the example
introduced earlier, the reporting of the fire and the turning
on of the sprinklers have to be done as quickly as possible
to ensure effectiveness of the WSAN’s application. Hence,
a simplistic solution to address hazards that involves the
sink waiting to hear confirmation of the previous directive
execution from all nodes in the WSAN will be clearly unde-
sirable. (ii) The solution, while avoiding hazards and max-
imizing directive-execution throughput, should also be
designed with consideration to the conservation of commu-
nication and energy resources [2] at the WSAN nodes. Spe-
cifically, the solution must incur low communication and
resource overheads. In this context, we make the following
contributions in this paper:

• We first identify the different types of hazards possible in
a WSAN, and outline the associated challenges in devel-
oping a solution to avoid them.

• We then present a distributed and localized approach
called the Neighborhood Clock approach that addresses
the hazards and the associated challenges efficiently, and
compare its performance against that of baseline strate-
gies using simulations-based analysis.

The rest of the paper is organized as follows: Section 2
illustrates the architecture for WSAN and identifies the
problem setting with an example. Section 3 identifies the
hazards and describes the associated challenges and goals.
Section 4 presents the design that needs to be leveraged for
hazard-free operation. Section 5 presents a distributed and
fully localized hazard avoidance approach that realizes the
basic design. Section 6 evaluates the performance of the
proposed approach with two basic strategies for a variety
of network conditions. Section 7 discusses some of the
issues with the proposed approach. Section 8 discusses
related works and Section 9 concludes the paper.

2. Model and example application

2.1. Model

In this paper, we consider an architectural model, where
there is a sink to help in the coordination of sensors and
actors. This is an extension of the existing architecture
for wireless sensor networks, where the sink serves as the
coordination entity and issues directives to both sensors
and actors. For the above model, we focus on a generic
class of applications, where there are regional events occur-
ring requiring several iterations of directives. There are other
classes of applications, such as applications where the
events are point-events, and applications where the events
can be addressed by just one round of operation. However,
these applications only require a subset of mechanisms to
address the problem considered in this work as we explain
in Section 7.

Given the above architectural model and class of appli-
cations, we now present an example application to explain
the problem considered in this work.

2.2. Example application

Consider an automated fire extinguisher system for a
large, greenhouse garden application. Let this system be
equipped with two types of sensors and two types of actors.
The first type of sensor is a temperature sensor that moni-
tors the average temperature in its sensing range and uses
this as a trigger to determine the presence of fire. The sec-
ond type is a humidity sensor, which determines the mois-
ture content in the air. The first of the two types of actors is
a sprinkler, which sprinkles water when there is a fire with-
in its acting range, while the second is a fan which removes
moisture from the air. One of the goals is to douse any out-
break of fire by activating the sprinklers, without flooding
the environment. The second goal is to maintain the mois-
ture level in the air below a certain threshold value by

1 We use the term directives to generically refer to both commands and
queries.

2 The inspiration for the term comes from the data hazards problem
when pipelining instructions in a CPU.

R. Vedantham et al. / Computer Communications 29 (2006) 2578–2598 2579



Download English Version:

https://daneshyari.com/en/article/448758

Download Persian Version:

https://daneshyari.com/article/448758

Daneshyari.com

https://daneshyari.com/en/article/448758
https://daneshyari.com/article/448758
https://daneshyari.com

