
Int. J. Electron. Commun. (AEÜ) 69 (2015) 629–635

Contents lists available at ScienceDirect

International Journal of Electronics and
Communications (AEÜ)

j ourna l h om epage: www.elsev ier .com/ locate /aeue

GENIUS – A genetic scheduling algorithm for high-performance
switches

Emilio C.G. Wille, José R. Hoffmann
Graduate Program in Electrical and Computer Engineering, Federal University of Technology – Paraná, Av. Sete de Setembro 3165, 80230-901,
Curitiba, PR, Brazil

a r t i c l e i n f o

Article history:
Received 7 October 2013
Accepted 1 December 2014

Keywords:
Routers
Input-queued switches
Scheduling algorithms
Genetic algorithms
Performance evaluation

a b s t r a c t

The most important switching systems in the Internet are the routers. Current routers employ input-
queued crossbar switches that require sophisticated scheduling techniques for packet transmission. The
performance of the router then directly depends on the scheduling algorithm, considering its throughput
and complexity. In this paper, a new genetic-based scheduling algorithm, called GENIUS, is developed and
tested for high-performance Internet switches operation. The GENIUS approach presents low complexity
and the results show a performance close to the optimal.

© 2014 Elsevier GmbH. All rights reserved.

1. Introduction

Internet is a very large packet switched network, built around
a large variety of transmission and switching systems. The most
important switching systems in the Internet are the routers. The
main tasks of a router are to receive the packets from input ports, to
find their local destination port on the basis of the routing table and
finally to transfer the packets to output ports. These two basic func-
tions, routing and switching, are very difficult to implement when
the aggregate bandwidth is very large, since complex algorithms
should run in a very short time. The design of high performance
routers is particularly important, given that today’s Internet is com-
posed by a relatively small number of very fast backbone networks,
which connect a very large number of smaller networks. All the
architectures for packet switching are constituted by a switch fab-
ric and some buffers. The switch fabric forwards the packets at the
inputs to their destination ports.

Fig. 1 shows the logical structure for an input-queued (IQ)
switch [1]. The switch operates on fixed-size cells (or packets), and
takes switching decision at equally-spaced time instants. The time
between two switching decisions is called time slot. During each
time slot a scheduling algorithm decides the configuration of the
switch by finding a matching on a bipartite graph.

We consider a switch with N inputs and N outputs, and assume
that all input and output lines run at the same speed. Packets are
stored at input interfaces. Each input manages one queue for each
output, hence a total of N × N queues are present. Each queue can
store up to M cells and excess packets are dropped. This queue
separation, called virtual output queuing (VOQ), permits to avoid

performance degradations due to head-of-the-line (HoL) block-
ing [2]. The switch fabric is non-blocking and memoryless, and
introduces no delay: at most one cell can be removed from each
input and at most one cell can be transferred to each output in
every time slot. The scheduling algorithm decides which cells are
transferred from the inputs to the outputs of the switch in every
time slot. Hence, the router performance is more influenced by
the scheduling algorithm, considering its throughput and complex-
ity. A number of scheduling algorithms can be found in literature
presenting, however, various degrees of performance [1,3–6].

Due to the high complexity that matchings problems usually
show, the use of intelligent methods is a mandatory requirement
when facing them. In this sense, evolutionary computation emerge
as efficient methods able to solve this kind of problems. Genetic
algorithms (GAs) are examples of evolutionary computation meth-
ods used to search, optimization and machine learning. They are
based on concepts of natural selection and natural genetics; and
can handle arbitrary kinds of constraints and objectives [7]. GAs
have been used to tackle a wide variety of problems in an extremely
diverse variety of fields as can be seen, for example, in [8,9]. In this
paper, the GA’s innate features of search in changing environments
[10] are explored in the construction of a scheduling algorithm,
presenting good performance, called GENIUS (Genetic Scheduling
Algorithm for High-Performance Switches). This intuition has been
already proposed in the literature [11,12]. However, we assess the
effectiveness of the proposed approach considering an in-depth
analysis. Two versions are proposed and analyzed: the elitist ver-
sion GENIUS-E, in order to achieve performance close to optimal,
and the simplified version GENIUS-S with reduced complexity.

http://dx.doi.org/10.1016/j.aeue.2014.12.001
1434-8411/© 2014 Elsevier GmbH. All rights reserved.

dx.doi.org/10.1016/j.aeue.2014.12.001
http://www.sciencedirect.com/science/journal/14348411
http://www.elsevier.com/locate/aeue
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aeue.2014.12.001&domain=pdf
dx.doi.org/10.1016/j.aeue.2014.12.001

630 E.C.G. Wille, J.R. Hoffmann / Int. J. Electron. Commun. (AEÜ) 69 (2015) 629–635

Fig. 1. Logical structure of an input-queued cell switch.

In summary, the main contributions of the paper are the follow-
ing: (i) we propose a scheduling algorithm for IQ switches which
is based on the GA’s natural characteristics of search in changing
environments; (ii) we study the system behavior as a function of
various parameters, and evaluate several performance metrics of
interest; (iii) we demonstrate that the genetic approach is quite
robust to several input traffic patterns; and (iv) we found results at
least as good as those from current scheduling algorithm found in
the literature. The remainder of this paper is structured as follows.
Section 2 presents the architecture and operation of the IQ switch
as well as the mathematical notation adopted. Relevant scheduling
algorithms related to our proposal and their basic functioning are
presented in Section 3. Section 4 describes the proposed genetic-
based scheduler and its variants. In Section 5 a set of numerical
results is discussed as well as survival and transient analysis are
performed. Related work is considered in Section 6. Finally, con-
cluding remarks and future directions are presented in Section 7.

2. Switch model

We consider an N × N input-queued switch. The arrival process
at input i, (i = 1, . . ., N), is a discrete-time process of fixed sized
packets, or cells. At the beginning of each time slot, either zero or
one cell arrive at each input. Each cell contains an identifier that
indicates which output j, (j = 1, . . ., N), it is destined for. The buffer
at input i is partitioned into N virtual output queues. When a cell
destined for output j arrives at input i it is placed in the FIFO queue
VOQij. Denote Q(t) = [qij(t)] the N × N matrix that records the lengths
of all VOQs at time t.

Let �ij be the average rate at which packets arrive at input i
for output j, and let � = [�ij] be the average arrival rate matrix, also
called the load matrix. We require the load matrix to be admissible:,
∀i, and, ∀j. In words, this condition ensures that no input or output
is oversubscribed [13]. The maximum input load is given by � =
max

i
(
∑

j�ij).

A feasible connection configuration can be seen as a matching in
a bipartite graph, where inputs and outputs correspond to nodes
in the graph and an edge between input i and output j denotes
that they are connected or matched. We use the binary variables
xij(t), to denote connections. Input i is connected with output j at
time t if, and only if, xij(t) = 1. Without loss of generality, we consider
only complete connections; that is, we allow a connection between
input i and an output j even if qij(t) = 0.

The FIFO queues are served as follows. A scheduling algorithm
selects a matching, X, between the inputs and outputs. At the end
of the time slot, if input i is connected to output j, one cell is
removed from VOQij and sent to output j. Let X(t) = [xij(t)] denote
the matching matrix at time t. Denote the weight of a matching X(t)
as W[X(t)] =

∑
ijqij(t)xij(t), taking the weight of the edge between

input i and output j to be equal to the queue-length qij(t).

Note that for an N × N switch the set of all possible matchings,
denoted by S, has a cardinality of N !

3. Scheduling algorithms

3.1. MWM algorithm

A scheduling algorithm of particular interest is the Maximum
Weighted Matching (MWM). The MWM algorithm chooses, at each
time t, the matching with the highest weight. More precisely, if
XMWM(t) denotes the matching determined by MWM at time t, then:

XMWM(t) = argmax
X∈S

{W[X]} (1)

There are two main quantities for measuring the performances
of a switch scheduling algorithm: throughput and delay. Past
theoretical works on packet switches have been concerned with
studying algorithms that achieve 100% throughput. Such algo-
rithms are referred to as stable algorithms. The MWM scheduler
delivers up to 100% throughput for all admissible independent and
identically distributed Bernoulli input traffic patterns [14,15]. The
literature shows that the MWM algorithm presents low delays (by
maintaining queue sizes small). However, being the problem solved
by applying the Hungarian algorithm [16], it presents temporal
complexity O(N3).

3.2. APSARA algorithm

The APSARA (A Parallel Scheduling Algorithm and its Random
Approximation) scheduling algorithm was proposed in [13]. APSARA
presents good performance and, being based on a population of
solutions, is taken as a basis for comparison in this work.

The following principles are fundamental for APSARA: (a) Queue
lengths change very little during successive time slots, suggest-
ing that a heavily weighted matching will continue to be heavily
weighted for a few more time slots, and (b) Two randomly chosen
matchings that differ by very few edges will quite likely be just as
heavy [13].

Let X(t) be the matching determined by APSARA at time t, and let
N[X(t)] be the neighborhood of X(t), i.e., the set of matchings that
differ by few edges of X(t). Let Q(t + 1) be the queue lengths at the
beginning of time t + 1. At time t + 1, APSARA works as follows:

• Determine N[X(t)] and the matching Z(t + 1) that correspond to a
Hamiltonian walk1 at time t + 1.

• Let S(t + 1) =N[X(t)] ∪
{

Z(t + 1) ∪ X(t)
}

. Compute the weight of
every matching Y ∈ S(t + 1) as W[Y] =

∑
ijyijqij(t + 1).

• Determine the matching with the highest weight, denoted
X(t + 1), from the set S(t + 1).

This basic version (APSARA-B) requires computing the weight of
neighbor matchings. Such computation is easy because in APSARA
each neighbor Y differs from matching X(t) in exactly two edges.

However, computing the weights of all

(
N
2

)
neighbors, if done in

parallel as shown in Fig. 2, will require a lot of space in hardware
for large values of N.

If one wants to build a switch with a larger number of ports
the number of parallel modules will make the system prohibitively

1 A Hamiltonian walk on the set of all matchings is defined as follows [17]. Con-
sider a graph with N ! nodes, each corresponding to a distinct matching, and all
possible edges between these nodes. If Z(t) is a Hamiltonian walk on this graph;
then, Z(t) visits each of the distinct nodes exactly once during times t = 0, . . ., N ! −1.
For t ≥ N ! it is defined Z(t) = Z(t mod N !).

Download English Version:

https://daneshyari.com/en/article/448793

Download Persian Version:

https://daneshyari.com/article/448793

Daneshyari.com

https://daneshyari.com/en/article/448793
https://daneshyari.com/article/448793
https://daneshyari.com

