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a  b  s  t  r  a  c  t

The  total  variation  model  has  been  considered  to be  one  of  the most  successful  and  representative  denois-
ing models  that  can  preserve  edges  well.  However,  its  main  shortage  is  that it  frequently  causes  the
undesirable  “block”  effect.  To  solve  this  problem,  high-order  TV  models  have  been  proposed.  Yet, they
tend  to damp  the  high  frequency  components  in an image,  often  resulting  in  over smoothing  or blurring  of
main  features  in  an image.  Besides,  the  optimization  solutions  underlying  high-order  TV models  can  only
be  obtained  through  numerically  solving  the  associated  high-order  PDEs  derived  from  the  Euler–Lagrange
equation,  which  is quite  time-consuming.  In this  paper,  we  propose  a  novel  total  variation  model  based
on  exponential  function  (ETV).  Furthermore,  a fast numerical  algorithm  is  designed  for  ETV  based  on
Split  Bregman  algorithm.  We  test  our  ETV  on  a  broad  range  of standard  images,  synthetic  aperture  radar
(SAR)  image  and  medical  magnetic  resonance  images  (MRI),  and  compared  with  the  related  TV,  and
high-order  TV models.  The  experimental  results  have  demonstrated  that  our  ETV  offers  much  better
trade-off  between  noise  removal  and  edge  preservation  as  compared  with  TV  and  high-order  TV models.
In addition,  ETV  also shows  a  high  computational  efficiency  when  boosted  by split  Bregman  algorithm.

©  2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The existence of noise in digital images is inevitable due to the
defects in acquisition, storage, and transmission system. And still,
some other types of noise such as speckle noise are caused by some
inherent law of physics during the formation of images (e.g. the
speckle noise in SAR images). Noise removal has always been an
important procedure in image processing, as the results of many
advanced techniques, such as data structure detection [1], feature
extraction, etc., are heavily determined by image quality. Therefore
the noise in images must first be reduced to an acceptable level,
before they can serve their purpose in any subsequent required
processing.

During the past few decades, numerous methods and algorithms
for noise removal have been proposed to meet the requirement for
higher image quality. The total variation (TV) model which was  first
proposed by Rudin, Osher and Fatemi (also called ROF model) [2],
is of great interest and probably the most successful one because
of its simple form and decent edge preserving performance. The TV
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model has been widely used in image denoising, image decompo-
sition, inpainting, deblurring, registration, etc.

Image restoration within the frame work of variation method
can generally be formulated as follows:

inf
u

{ˇR(u) + ε(u, f )}, (1)

where R(u) denotes a regularization functional measuring the oscil-
lations of an image u, while ε(u, f) is a fidelity term preventing the
results from getting too “far” from the original one f.  ̌ > 0 is a weight
parameter balancing the importance between two  terms R(u) and
ε(u, f).

In TV model, R(u)is chosen as the total variation of u, and ε(u, f)
as an L2-norm. TV takes the following simple form:

E(u) = ˇ

∫ ∣∣∇u
∣∣d  ̋ + 1

2

∥∥f − u
∥∥2

2
, (2)

where  ̋ is the image domain.
Despite the advantages TV model has, there still exist some

defects and limits. For example, it frequently produces undesir-
able block effect. And it also shows its limitation when coping with
impulsive noise and oriented textures. Many modifications have
been made to improve its performance and adaptability. In our
opinion, the TV has been improved in three aspects.
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In the first aspect, major efforts have been made to improve
the regularization term that primarily determines the performance
of image restoration. Some edge-preserving regularization models
have been proposed, such as the Lorentzian potential, the Huber
potential [3], and the Charbonnier potential [4]. In [5], two higher
order functional models have been proposed by replacing the first
order derivatives in the regularization term with two second order
derivatives to reduce the block effect and improve smoothness in
planar areas.

The two higher order functional are respectively given by:

E(u) = R1(u) + �

2

∥∥f − u
∥∥2

2
=
∫

(|uxx| + |uyy|)d  ̋ + �

2
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∥∥2

2
,

(3)

E(u) = R2(u) + �
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2
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Following Euler–Lagrange procedure, we obtain the following
two fourth order PDEs (respectively denoted by 4OR1 and 4OR2):

∂u

∂t
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)
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+ � (f  − u) , (5)
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where
∣∣D2u
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√
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∫ (
uxx

|uxx| (f − u)xx + uyy∣∣uyy

∣∣ (f − u)yy

)
d˝,  (7)

with � = 1 by default.
Also, combinations of TV and second order TV has been proposed

to achieve the balance between smoothness and edge preservation
[6]. In [7], a regional spatially adaptive total variation model was
proposed to achieve better denoising result in flat area of images.
And in [8], a shearlet based TV was proposed, in which the regu-
larization term took good advantage of the sparse features of the
shearlet representation for more effective denoising.

In the second aspect, large amount of work has been concen-
trated on improving the fidelity term. Fidelity term in the form
of L1-norm was proposed to suppress outliers such as salt-pepper
noise [9]. Meyer proposed to replace the L2 norm in (2) with a G
norm defined in Banach space in order to capture the noise more
accurately [10]. A novel texture model based on local Fourier trans-
form has been proposed to provide a better adaptability to textures
that are locally parallel and obviously oriented [11]. A TV based
model with improved adaptive fidelity term (IAFT) was  proposed
in [12], which could improve the results in edges of images.

In the last aspect, much effort has been put into the improve-
ment of the numerical algorithms to minimize (2). Following
Euler–Lagrange procedure, the PDE corresponding to (2) was
obtained:

∂u

∂t
= ˇdiv

(
∇u∣∣∇u
∣∣
)

+ (u0 − u) = ˇ∣∣∇u
∣∣ ∂2

u

∂T2
+ (u0 − u), (8)

where

∂2
u

∂T2
= 1

u2
x + u2

y

(u2
yuxx − 2uxuyuxy + u2

x uyy), (9)

with T denoting the tangent directions to the isophote lines.
Numerically solving this PDE with the noisy images u0 as ini-

tial conditions, and the preset time step and number of iteration is
the most straightforward way to minimize (2). However, it usually
requires a large number of iteration to achieve desirable results.
Many fast algorithms have been proposed, such as Chambolle’s
projection algorithm [13], Bregman iteration methods [14], split
Bregman algorithm [15], etc. We  suggest interested readers refer
to [16] for a comprehensive review of the numerical algorithms and
codes to minimize (2).

Let us now present the purpose of this paper. In this paper,
we focus on improving the regularization term in functional (2).
Although the two high-order TV models (3) and (4) can reduce
block effect, they tend to damp the high frequency components
in an image [17], which often results in over smoothing or blur-
ring of main features in an image, as shown later. Moreover, until
now, there is no fast algorithm to solve (3) and (4). The optimal
solutions to models (3) and (4) can only be obtained by numeri-
cally solving the corresponding high-order PDEs (5) and (6), which
is quite time-consuming. The purpose of this paper is to propose
a novel total variation model based on exponential function. We
present the development of the new method from the construc-
tion of the model to a complete, fast numerical algorithm, the
choices of parameters and applications. We  test our ETV on a broad
range of standard test images and real-world images including one
synthetic apparatus radar (SAR) image and two  medical magnetic
resonance images (MRI), and compare it with TV, 4OR1 and 4OR2.
The experimental results have demonstrated that ETV offers much
better trade-off between noise removal and edge preservation as
compared with TV, and the two HOTVs. In addition, ETV takes a
form as simple as TV and requires the least computational time
among the four methods.

The organization of this paper is as follows. In Section 2 we
describe in detail the proposed exponential total variation model
and its fast numerical algorithm based on Split Bregman algo-
rithm. In Section 3, we present experiments and comparisons. And
a discussion of the experimental results is also included. Section 4
provides the summary for this paper.

2. Our ETV and its fast numerical algorithm

As mentioned above, the regularization functional primarily
determines the performance of image restoration models. Unsat-
isfied with the results of 4OR1 and 4OR2, we  restrict ourselves
to proposing a new regularization functional in this section. The
requirements for regularization functional are that it should be able
to measure the oscillations in an image u, and be an increasing
function with respect to the smoothness of u. At the same time,
considering numerical algorithm of the minimization, it is highly
expected that the regularization functional should take a form as
simple as possible.

In the previous TV, the oscillations in an image are measured by
the gradient of an image

∣∣∇u
∣∣. To obtain the stable solutions of the

Eq. (2), one usually adds a small value ε to the Eq. (2), and obtains:

E(u) = ˇ

∫ √∣∣∇u
∣∣2 + εd  ̋ + 1

2

∥∥f − u
∥∥2

2
. (10)

With the small value ε added, the original energy curve, which is
a line running through origin point, becomes a hyperbolic curve
whose focus point lies on the vertical axis. The hyperbolic curve
intersects the vertical axis with an intercept equal to 1. And this
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