
High-speed IP address lookup using balanced multi-way trees q

Hyesook Lim a,*, Wonjung Kim a, Bomi Lee b, Changhoon Yim c

a Department of Information Electronics, Ewha Womans University, Seoul, Republic of Korea
b Digital Media Research Center, MCT Group, LG Electronics, Seoul, Republic of Korea

c Department of Internet and Multimedia, Konkuk University, Seoul, Republic of Korea

Received 6 April 2005; received in revised form 19 October 2005; accepted 6 December 2005
Available online 5 January 2006

Abstract

Rapid growth of the Internet traffic requires more bandwidth and high-speed packet processing in the Internet routers. As one of the
major packet processing performed in routers, address lookup determines an output port using the destination IP address of incoming
packets. Since routers should perform address lookups in real-time for hundred millions of incoming packets per second referring a huge
routing table, address lookup is one of the most challenging operations. In this paper, we propose a multi-way search architecture for IP
address lookup which shows very good performance in search speed. The performance evaluation results show that the proposed scheme
requires a single 282 kbyte SRAM to store about 40,000 routing entries, and an address lookup is achieved by 5.9 memory accesses in
average.
� 2005 Elsevier B.V. All rights reserved.

Keywords: IP address lookup; Balanced tree; Multi-way tree; Router; Memory access; Binary prefix tree

1. Introduction

Due to the increasing number of domains and hosts con-
nected to the Internet, packet forwarding in the Internet rou-
ters is more and more complicated. As one of the major
operations in packet forwarding, IP address lookup should
be performed in real-time for each incoming packet, and it
becomes the bottleneck of router performance. A lot of algo-
rithms and architectures have been studied for efficient IP
address lookup. Their performance is evaluated using sever-
al metrics such as number of memory accesses, required
memory size, flexibility in route update, scalability toward
larger routing table, and pre-processing requirement.
Among them, the number of memory accesses are the most
important since it is directly related to lookup speed.

In this paper, we propose a software-based address
lookup scheme which shows very good performance on
those metrics. In the proposed scheme, a routing table
is divided into multiple balanced trees stored into a
memory, and multi-way search is performed in each tree.
The rest of the paper is organized as follows. In Section
2, previous works are briefly summarized. Section 3 pre-
sents our proposed architecture. Section 4 shows the sim-
ulation results using real database and performance
comparison with previous works. Brief conclusions are
provided in Section 5.

2. Previous works

Routing table entries have prefixes which represent net-
work parts of IP addresses connected to the Internet. IP
address lookup problem is to find the best matching prefix
(or the longest matching prefix) among prefixes in the rout-
ing table with the destination IP address of input packet. A
number of previous IP address lookup schemes are catego-
rized as follows.

0140-3664/$ - see front matter � 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2005.12.002

q This research was supported by the Ministry of Information and
Communications, Korea, under HNRC-ITRC support program super-
vised by IITA.

* Corresponding author. Tel.: +82 2 3277 3403; fax: +82 2 3277 3494.
E-mail address: hlim@ewha.ac.kr (H. Lim).

www.elsevier.com/locate/comcom

Computer Communications 29 (2006) 1927–1935

mailto:hlim@ewha.ac.kr


First one is a ternary content addressable memory
(TCAM)-based scheme [1]. TCAM performs IP address
lookups for entire entries concurrently with single memory
access cycle. However, it is more expensive than common
memory, and it has smaller storage space than a same size
SRAM as well as it has higher power consumption. There-
fore, it is impractical to implement routing table with sev-
eral hundred thousands of prefixes using TCAM.
Moreover, TCAM has a scalability issue to IPv6.

Second, trie is the most common tree-based data struc-
ture which represents a routing table. Trie stores a prefix
into a node which is defined by the path from the root of
the trie. Table 1 shows an example set of prefixes. Using
the prefix sample set given in Table 1, Fig. 1 shows the
binary trie [2]. In Fig. 1, black nodes represent prefixes
and white nodes represent un-assigned internal nodes.
Search is performed in bit-by-bit basis, i.e., starting from
the root, search moves onto left child or right child depend-
ing on the corresponding input bit 0 or 1, respectively. The
number of memory accesses is proportional to the length of
prefixes in a binary trie, and the number of memory acces-
ses is excessive because of the empty internal nodes as
shown in Fig. 1. In order to reduce the number of memory
accesses in a binary trie, path-compressed trie removes un-
assigned single-child nodes, multi-bit trie [3] inspects more
than one bit at a time using prefix expansion [4], and level-
compressed trie applies multi-bit trie with path compres-
sion technique [5]. In [6], prefix shorter than 24 bits are
expanded to 24 bits, and then initial lookup is performed
on the 224 entry table. If there exist longer prefixes, an addi-
tional lookup is executed at the second memory using the
pointer indicated at the indexed entry of the first memory.

However, 32 Mbytes of memory is required to store 224

entries. The scheme proposed in [7] first constructs a for-
warding table with 216 entries after expanding prefixes into
16 bits, and then builds sub-trees pointed by each entry for
prefixes longer than 16. This scheme requires long pre-pro-
cessing time to construct sub-trees.

There are hash-based schemes. Several schemes have
been proposed to apply hashing for IP address lookup
[8,9]. Waldvogel et al. [8] proposed to organize a routing
table by prefix length and apply a binary search on the pre-
fix length in the routing table. In accessing prefixes in each
length, hashing is used. The binary search requires the
worst case of O(log2 D) memory accesses (D is the number
of different levels in trie). However, this scheme requires
long pre-processing to compute the best matching prefix
of each entry and markers, and hence the routing table
update is not trival. By constructing multiple routing tables
and multiple hash functions organized by prefix length,
Lim et al. [9] suggested parallel hashing for each prefix
length. The number of memory accesses is varied because
of the binary search on sub-tables in their scheme.

One of the successful attempts in reducing the required
number of memory accesses in trie is Lulea scheme [10].
The scheme reduces a forwarding table into a small data
structure which fits into a cache. However, incremental
update is not possible in this scheme because of the pre-
processing requirement, and it is not appropriate for a
large table.

In binary search on range [11], each prefix is represented
as a range using the start and the end of the range, and
hence the range endpoints for N prefixes partition the space
of addresses into 2N + 1 disjoint intervals. The algorithm
uses binary search to find out the interval in which a desti-
nation address lies. However, since each interval should
correspond to a unique prefix match with the best matching
prefix, the algorithm requires pre-computation of this map-
ping and storing it with range endpoints. Hence this
scheme does not provide incremental update.

As one of the most recent tree-based approaches, binary
prefix tree (BPT) [12] improved search speed very efficiently
by removing empty nodes in trie. In order to construct a
tree without empty node and perform binary search, this
scheme made several definitions concerning the relation-
ship of prefixes of different lengths as shown in Fig. 2.

Using the same sample set, Fig. 3 shows the binary pre-
fix tree (BPT). While the trie has many empty internal
nodes which cause excessive number of memory accesses,
BPT includes no internal nodes and hence reduces the
number of memory accesses very efficiently. However, for
proper binary search, enclosures (prefix a in Fig. 3) in
BPT should be located in upper level of tree than the pre-
fixes which have enclosures as a substring, and this limita-
tion causes the constructed BPT highly unbalanced
depending on prefix distribution. The required number of
memory accesses depends on the depth of the tree, and
the tree depth of BPT is also O(W), where W is the maxi-
mum length of prefixes. Since BPT is not balanced, each

Table 1
Prefix samples

a 000
b 001
c 010
d 0110001101
e 0110010101
f 011001101
g 0110100000
h 0111
i 100
j 10101
k 1011
m 11000
n 11001
o 11010010
p 11010011
q 110101
r 11011
s 111000110
t 11101
u 1111
v 000000
w 00001
x 0001000
y 000101000
z 000110101

1928 H. Lim et al. / Computer Communications 29 (2006) 1927–1935



Download English Version:

https://daneshyari.com/en/article/448828

Download Persian Version:

https://daneshyari.com/article/448828

Daneshyari.com

https://daneshyari.com/en/article/448828
https://daneshyari.com/article/448828
https://daneshyari.com

