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a  b  s  t  r  a  c  t

The  regular  fast  Fourier  transform  (FFT)  requires  a  uniform  Cartesian  orthogonal  grid  which  has  consider-
able stair-casing  errors  when  dealing  with  the function  having  an  arbitrary  shape  boundary.  The recently
proposed  two-dimensional  discontinuous  fast Fourier  transform  (2D-DFFT)  can  overcome  this  problem
by  using  triangle  mesh  discretization  and  Gaussian  numerical  integration.  However,  the  interpolation  is
used for  the  function  data  in  the  original  2D-DFFT,  which  reduces  the  accuracy  performance  especially
for the  case  of  oscillating  functions.  This work  presents  a useful  modification  of  the  original  2D-DFFT
by  removing  the  requirement  of  function  interpolation  to  obtain  significant  accuracy  improvement.  In
addition,  the  modified  2D  nonuniform  fast  Fourier  transform  (NUFFT)  with  real-valued  least-square  inter-
polation  coefficients  are  developed  to speed  up  the  computation  of  numerical  Fourier  transform  over  the
triangle  mesh.  Numerical  experiments  are  conducted  to  demonstrate  the  effectiveness  and  advantages
of the  proposed  algorithms.

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

The Fourier transform method has many applications such as
the evaluation of the secondary pattern from an aperture field
[1,2], solution to electromagnetic scattering problems [3–5], and
fast measurement of stress anisotropy in magnetic thin films [6]. In
these applications, the functions to be transformed may  have dis-
continuities at the boundaries or at the interfaces of multilayered
material. Such discontinuous boundaries usually have arbitrary
shapes, and consequently the regular fast Fourier transform (FFT)
algorithm based on an orthogonal grid has considerable stair-casing
error for approximating the continuous Fourier transform. In very
few special cases, closed-form solutions are available for the Fourier
transform of 2D constant [2,7] or linear distributions [8] with polyg-
onal shape boundaries. Naturally, they cannot evaluate directly the
Fourier transform of an arbitrary distribution. Several fast numer-
ical Fourier transform methods have been proposed previously for
the case of one-dimensional (1D) discontinuous functions [9–11].
Among them, the discontinuous fast Fourier transform (DFFT)
algorithm presented in [11] has been recently extended to the two-
dimensional (2D) case [12]. Either the 1D or 2D-DFFT algorithm
employs a double interpolation procedure: one is for interpolat-
ing the function and the other is for the exponential. In particular,
the 2D-DFFT algorithm in [12] uses triangle mesh to discretize the
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support domain of the function, and applies the Gaussian numerical
integration over the triangular mesh to perform the Fourier trans-
form [13]. Such processing makes the discretization grid capable of
conforming with any boundary shape, and consequently removes
the stair-casing approximation error. This technique leads to the
requirement of evaluating the 2D nonuniform discrete Fourier
transform (2D-NUDFT) which can be efficiently done by using the
nonuniform fast Fourier transform (NUFFT) algorithm presented in
[14,15].

It should be noted that the 2D-DFFT presented in [12] was
developed for potential applications in solving Maxwell’s integral
equations [3–5]. To guarantee the continuity of physical variables
(e.g., the electrical current continuity), the function is assumed to
be sampled only at the triangle vertexes, and values at the Gaussian
integration points are obtained by linear interpolation of the sam-
pled data. However, the linear interpolation degrades the accuracy
performance of 2D-DFFT. Especially for the oscillating functions, its
accuracy will be significantly reduced. To our knowledge, there are
also many situations where the sampling positions can be chosen
according to the computational accuracy and efficiency, and the
interpolation of function is unnecessary. For example, the pseudo-
spectral time-domain (PSTD) method, well known for its capability
of solving large-scale electromagnetic or acoustic problems [16],
needs to evaluate the direct Fourier transform of physical compo-
nents at a set of prefixed positions. Due to the limitation of regular
FFT, the PSTD is usually applied to the uniform grid. Actually we
can choose Gaussian integration points as the prefixed grid for the
Fourier transform (this will extend the original PSTD method to
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Fig. 1. Sampling patterns of a circular plane for FFT (a) and for the proposed algo-
rithms with Gaussian integration schemes I (b), II (c), and III (d).

suit more general geometry). In this case, no interpolation of the
function is required.

Here the 2D-DFFT is modified for directly evaluating the Fourier
transform of a 2D discontinuous function. The proposed mod-
ifications include: (a) the function is sampled at the Gaussian
integration points instead of at the triangle vertexes in the origi-
nal 2D-DFFT, and no interpolation is required for the function data;
(b) the 1D modified NUFFT presented in [17] is here extended to
the 2D case, and the modified 2D-NUFFT has real-valued interpo-
lation coefficients to halve the storage and computational cost of
the kernel convolution process required by the NUFFT. Although
the original 2D-DFFT can guarantee the continuity of the func-
tion across adjacent triangle elements which is required for some
particular applications, the modified algorithm is much more accu-
rate and efficient, especially for the case of oscillating functions.
A number of numerical experiments are conducted to verify the
performance and advantage of the modified algorithm.

2. Triangle discretization and Gaussian integration

The problem of finding the Fourier transform of a 2D discon-
tinuous function can be reduced to the evaluation of the following
integral:

F(k) =
∑

i

∫
Si

f (x)e−jk · xdx (1)

where x = [x, y], k = [kx, ky], and f(x) is assumed to be continuous
inside the individual support domain Si.

The regular FFT requires a uniform orthogonal grid to discretize
the support domain. For example, Fig. 1(a) shows the sampling pat-
tern of 2D FFT for a circular surface. As can be seen, the sampling
with an orthogonal grid cannot capture well the boundary shape of
the support. To overcome this problem, we use triangular elements
to discretize the support. The discretization with triangles has the

Table 1
Gaussian quadrature weights and nodes corresponding to three sampling schemes
shown in Fig. 1(b)–(d).

wi ˛i ˇi � i

Scheme I 1 1/3 1/3 1/3

Scheme II 1/3 1/2 1/2 0
1/3  0 1/2 1/2
1/3  1/2 0 1/2

Scheme III 1/3 2/3 1/6 1/6
1/3  1/6 2/3 1/6
1/3  1/6 1/6 2/3

ability to conform with an arbitrary shape boundary. Symmetri-
cal Gaussian quadrature formulas over the triangles [13] are then
adopted to approximate the integral of (1). Here, three Gaussian
quadrature formulas with different quadrature nodes and weights
are used for comparison. The resulting three sampling patterns are
shown in Fig. 1(b), (c) and (d), respectively. The nodes and weights
for each kind of Gaussian quadrature [13] are shown in Table 1.
Accordingly, the integral of (1) can be approximately calculated by
collecting the Gaussian quadratures over all the triangles. That is,∫

S

f (x)e−jk · xdx ≈
L∑

l=1

Al

I∑
i=1

wif (xl
i)e

−jk · xl
i (2)

where Al denotes the area of the lth triangle, wi denotes the weight
of the i-th node, and xl

i
denotes the location of the ith node of the

lth triangle. xl
i
can be calculated by

xl
i = ˛ix

l
a + ˇix

l
b + �ix

l
c (3)

where xl
a, xl

b
and xl

c denote the locations of three vertexes of the lth
triangle, and the definitions of ˛i, ˇi and � i are given in Table 1. Here
we assume that the sampling positions used for numerical Fourier
transform are put exactly on the Gaussian points. That is, the value
f (xl

i
) is already known and no function interpolation is needed. This

is different from the original 2D-DFFT in [12] where the function is
sampled at the triangle vertexes and the values at Gaussian points
are obtained by linear interpolation.

We  can rewrite (2) as in the form of Fourier summation

F(k) =
M−1∑
m=0

Hme−jk · x′
m (4)

where M = LI, H(l−1)I+i−1 = Alwif (xl
i
), and x′

(l−1)I+i−1 = xl
i
. Sampling

the above expression in k space with k = [2��1n1, 2��2n2] where
n1 = − N1/2 . . . N1/2 −1 and n2 = − N2/2 . . . N2/2 −1, we obtain

Fn =
M−1∑
m=0

Hme−j2�vm · n (5)

where n = [n1, n2] and vm = [�1, �2]. ∗ x′
m. The symbol “.∗” denotes

the element-by-element multiplication. Clearly, (5) is in the form
of 2D NUDFT.

3. Modified 2D-NUFFT with real-valued interpolation
coefficients

As is well known, direct evaluation of (5) costs O(MN1N2) oper-
ations. Recent developments in nonuniform fast Fourier transform
(NUFFT) algorithms [15,17,18] provide more efficient tools to eval-
uate the NUDFT. In particular, the modified NUFFT algorithm that
has real least-square (LS) interpolation coefficients is recently
presented in [17], and this algorithm achieves the reduced com-
putation and storage cost compared with the original NUFFT. The



Download	English	Version:

https://daneshyari.com/en/article/448863

Download	Persian	Version:

https://daneshyari.com/article/448863

Daneshyari.com

https://daneshyari.com/en/article/448863
https://daneshyari.com/article/448863
https://daneshyari.com/

