
An efficient hybrid approach to per-flow state tracking
for high-speed networks q

Brad Whitehead a, Chung-Horng Lung a,⇑, Peter Rabinovitch b

a Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
b Alcatel-Lucent, Ottawa, Canada

a r t i c l e i n f o

Article history:
Received 27 June 2012
Received in revised form 19 December 2012
Accepted 26 December 2012
Available online 16 January 2013

Keywords:
Network monitoring
Flow tracking
Bloom filter
High-speed networks
d-Left hashing

a b s t r a c t

Maintaining per-flow information and state is a crucial topic in network monitoring. Tracking per-flow
state is a relatively new area. Two main approaches have been proposed for tracking state: Binned Dura-
tion Flow Tracking (BDFT) and Fingerprint-Compressed Filter Approximate Concurrent State Machine
(FCF ACSM). BDFT which uses Bloom filters is time efficient, whereas FCF ACSM using d-left hash tables
has near-perfect memory efficiency but has higher computational cost. This paper presents a hybrid
method (BDFT-H) by employing the best features of BDFT and FCF ACSM to achieve both time and space
efficiency. Performance analysis and comparisons are conducted for BDFT, FCF ACSM, and BDFT-H. These
methods are all intended for implementation on high-speed routers where resources such as memory
and CPU time are limited. For the computational performance of the three schemes, we find that based
on analysis, d-left hashing may require substantially more computational resources than Bloom filters.
We also conduct simulations to compare the accuracy of these three schemes and the results show that
all three methods can achieve over 99% accuracy on traces of real traffic. The proposed BDFT-H provides
the best overall tradeoff between time and space efficiency. Both BDFT and FCF ACSM may have the false
positive issue. This paper also presents two additional BDFT extensions: BDFT-FPR (false positive
removal) and BDFT-FPC (false positive correction) to deal with the false positive issue. Performance
comparisons for BDFT and these two BDFT extensions are also conducted using real traffic traces for
comparison.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Monitoring the transmission of various network protocols is
crucial to ISPs, as better network control leads to better utilization
which leads to lower costs. A common task to network
measurement applications is to store some amount of state about
individual flows. Monitoring per-flow state on high-speed routers
requires an approach that is highly efficient in terms of both
memory and processing capabilities. Packet sampling (e.g., 1 in
20 sampling) normally returns low accuracy. For long duration
and high bandwidth flows, a naive implementation can manage
to track some long duration flows. However, the memory usage
could be very high, as the number of flows can be huge.

This paper proposes a method of tracking per-flow state that is
both time and space efficient. The main idea is to integrate two
efficient approaches; one is efficient in time, the other one is highly

effective in memory usage but has higher computational cost.
These two approaches are briefly summarized in the next two
paragraphs. Section 3 discusses both approaches in details.

The first method, Binned Duration Flow Tracking (BDFT), was
proposed [23,25] as a time efficient method for flow tracking. In
brief, BDFT operates by grouping individual flows into ‘‘bins’’
which represent the current state of the flow. BDFT assigns
time ranges to each state (bin) (e.g., 0–15 s, 15–45 s, 45–75 s,
75–105 s), and moves flows to the next time range (state) on a
periodic basis. BDFT inherits much of its time and space efficiency
from the use of counting Bloom filters [3] as the data structure
which represents the bins.

The other approach is Fingerprint-Compressed Filter Approxi-
mate Concurrent State Machine (FCF ACSM, [3]) which can
effectively track per-flow duration. FCF ACSM was mainly
motivated by an observation obtained from the field: routers and
network devices have to keep a large volume of the state of TCP
connections and the application level QoS requirements. FCF ACSM
was therefore proposed with an aim at improving memory usage.
The paper also illustrated two potential applications of FCF ACSM
to two real examples: queue management schemes for video flows
and real-time control of P2P traffic.

0140-3664/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.comcom.2012.12.010

q The project was sponsored by Ontario Centres of Excellence (OCE), and
Alcatel-Lucent, Ottawa, Canada.
⇑ Corresponding author. Tel.: +1 613 520 2600 x 2642.

E-mail addresses: bwhitehe@sce.carleton.ca (B. Whitehead), chlung@sce.
carleton.ca (C.-H. Lung), peter.rabinovitch@gmail.com (P. Rabinovitch).

Computer Communications 36 (2013) 927–938

Contents lists available at SciVerse ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/locate /comcom

http://dx.doi.org/10.1016/j.comcom.2012.12.010
mailto:bwhitehe@sce.carleton.ca
mailto:chlung@sce. carleton.ca
mailto:chlung@sce. carleton.ca
mailto:peter.rabinovitch@gmail.com
http://dx.doi.org/10.1016/j.comcom.2012.12.010
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

In short, FCF ACSM is highly memory-efficient [3] but has higher
computational cost than BDFT. Both space and speed are crucial
concerns to routers and network devices for an increasing trend
that is more application aware services. We presented a hybrid
of BDFT and FCF ACSM, which takes advantage of the best charac-
teristics of each called BDFT-H [26]. This paper extends our initial
effort by presenting the computational comparison of the three
methods–BDFT, FCF ACSM, and BDFT-H in details for more general
cases. It is both practically and theoretically important to consider
more general cases for scalability analysis. Further, two extensions
of [26], which deal with the false positive issue, are also evaluated
and presented for comparison in this paper. Those two false posi-
tive specific extensions are BDFT-FPR (false positive removal) and
BDFT-FPC (false positive correction).

Computational comparison is central to this paper. We adopt
three main performance metrics for computational analysis: pro-
cessing time, memory size used, and estimation accuracy. These
metrics are important parts of the overall performance picture of
each method. Processing time is directly related to the CPU re-
source. For the per-flow tracking problem, processing time is also
strongly tied to the number of memory accesses for each packet
or flow, and it has to be extremely efficient for router’s forwarding
rate [15]. In addition, accuracy for flow duration estimation is crit-
ical in determining the computational performance for per-flow
tracking, as accuracy provides useful or necessary information for
network utilization and management. The accuracy and memory
usage of various methods is determined by running simulations
with two real-world traffic traces, and the processing time is deter-
mined by evaluating critical CPU operations that are needed.

The main contribution of the paper is a hybrid method (BDFT-H)
by adopting the best strengths of BDFT and FCF ACSM to achieve
both time and space efficiency. For the computational performance
of BDFT, FCF ACSM, and BDFT-H, we find that, based on analysis,
d-left hashing may require substantially more computational
resources than Bloom filters. We also conduct simulations using
traffic traces to compare the accuracy of these three schemes and
the results show that the proposed BDFT-H provides the best over-
all tradeoff between time and space efficiency.

The rest of the paper is organized as follows: Section 2 describes
the background and recent state-of-the-art per-flow tracking
methods. Section 3 discusses BDFT and FCF ACSM. Section 4 pre-
sents BDFT-H. Section 5 discusses computational analysis of these
three methods. Section 6 presents the experiments and results for
BDFT, FCF ACSM, BDFT-H, as well as two extensions of BDFT. Final-
ly, Section 7 concludes our study.

2. Background

Tracking per-flow state is a relatively new area. Bloom filters
and its variants such as counting Bloom filters [2,4] have become
wide-spread in network monitoring. In [4], a number of applica-
tions of Bloom filters and its variants were discussed, such as
distributed caching, P2P networks, packet routing, queue manage-
ment, and network measurement infrastructure. The main reason
is their ability to provide a time and space efficient data structure
to represent a set of items when some errors are acceptable [2].
Some other Bloom filter variants are Space-Code Bloom filters
[14] and Time-Decaying Bloom filters [9] which can track flow
duration with medium accuracy. It is shown that a Bloom filter
can be implemented in hardware and can scale to OC-192
(10 Gbps) speeds [1].

Bonomi et al. [3] presented two variations of a state tracking
system using Bloom filters. Their first method uses a single count-
ing Bloom filter to store a set of <flow, state> pairs. Their second
approach uses counting Bloom filters to store both a count and a

state in each cell corresponding to a flow’s hashes. The main differ-
ence between their methods and ours is that our paper introduces
the concept of using multiple bins (and therefore Bloom filters) to
achieve high accuracy with low computational requirements.

Cuckoo hashing requires only a constant number of items to be
moved for each insertion, depending on the load of the hash table.
However, standard cuckoo hashing suits software applications, not
high-speed routers [12]. In [13], the authors designed a scheme
that allows at most one item to move during insertion, which re-
sults in higher space utilization. Both [12] and [13] consider the
availability of content addressable memory that allows parallel
lookups.

In [17], the authors proposed a near-optimal memory efficiency
approach using counter braids. Multi-level counters are used in the
approach to reduce memory overhead. However, the number of
memory accesses per packet limits the computational efficiency.

Chen, et al. [8] presented an approach to tracking flow durations
using two Bloom filters and sampling techniques. Their aim is to
support anomaly detection and traffic engineering. Nevertheless,
they only concern traffic flows that have long durations. Our ap-
proach can be used for all flows, including long duration flows.

Authors of [20] proposed the virtual vector data structure for
network traffic monitoring and analysis. The main objectives of
their approach are to study spread estimation, per-flow measure-
ment, and long-duration flow detection. Their approach monitors
every packet and stores summarized state information at a router,
which is practically challenging to keep up with the line speed of
modern routers [15,16].

Detection of long-duration flows is a primary goal for [8] and
[20]. This goal can also be easily identified using BDFT, as the
long-duration flows will be stored in the longer duration bins in
BDFT or BDFT-H, see Section 3.1 for BDFT and Section 4 for
BDFT-H, respectively.

Authors in [16] proposed a novel data structure called probabi-
listic multiplicity counting (PMC) to track per-flow probabilisti-
cally. The aim of PMC is to approximately keep track of the
number of packets per flow. PMC is used for sampling data into only
a single bit and extracting multiplicity from the single bit. The re-
sults show that PMC outperforms the approach presented in [14]
and the standard sample technique. On the other hand, flow track-
ing is more than just keeping track of the number of packets per
flow as used in this paper.

Li et al. [15] presented an approach for per-flow traffic measure-
ment and analysis using a data encoding/decoding scheme for coun-
ter sharing among traffic flows. Their objective is to minimize the
number of memory access per packet or computational cost on lim-
ited SRAM memory. It seems that the memory size required in their
approach could be large, up to 8 MB for their experiments, com-
pared with our approach (see Section 6 for experimental results).

Tracking traffic flows is also studied by Weaver et al. [22]. In-
stead of targeting general traffic monitoring and analysis, the
authors investigated the characteristics of TCP Reset (RST) packets
that are artificially injected into the network by ISPs or operators
that cause the endpoints to shut down communication upon
receipt.

Network monitoring involves storing a huge amount of data. An
efficient storage technique was investigated by authors in [27]. The
proposed technique performs data compression task for space
reduction and provides the probability to execute operations di-
rectly on the compressed data instead of running decompression
to reduce computational overhead. The technique, however, trades
off accuracy for storage reduction. The controlled experimental re-
sults showed that the technique could achieve compression rate of
20% and approximate the original data within 5% relative error.

Further, network flow analysis is related to anomaly detection.
Current anomaly detection approaches can be categorized into:

928 B. Whitehead et al. / Computer Communications 36 (2013) 927–938

Download English Version:

https://daneshyari.com/en/article/448873

Download Persian Version:

https://daneshyari.com/article/448873

Daneshyari.com

https://daneshyari.com/en/article/448873
https://daneshyari.com/article/448873
https://daneshyari.com

