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a  b  s  t  r  a  c  t

The  complex  direct  frequency  estimation  (CDFE)  adaptive  algorithm  is developed  and  proposed  in  this
paper.  The  motivation  of  this  work  is  obtained  from  the  previous  real DFE  (RDFE)  adaptive  algorithm.
The  methodology  of  the  CDFE  is  based  on the  linear  prediction  property  of  complex  sinusoidal  signals.
The  proposed  algorithm  is unbiased  and  computationally  efficient.  Moreover,  it  is  easy  to  implement  and
appropriate  for real-time  applications.  In  addition,  the convergence  behavior  is analyzed  and  the  steady-
state mean  square  error  (MSE)  of  the  frequency  estimate  is derived  in  closed  form.  Computer  simulations
are treated  to  corroborate  the  theoretical  analysis.

© 2012 Elsevier GmbH. All rights reserved.

1. Introduction

Frequency estimation based on adaptive methods play a major
role in many areas of digital signal processing applications [1,2]
such as Doppler estimation of radar and sonar wave returns, carrier
and clock synchronization, angle of arrival estimation, frequency-
shift keying (FSK) demodulation and so on.

As found in the literatures, there are two groups of estimating
the sinusoidal signal parameters, depending on statistical prop-
erties of the input signal, say, deterministic or random. The first
one are the classical batch methods such as MUSIC [3],  modified
covariance (MC) [4],  Pisarenko harmonic decomposition (PHD) [5],
reformed PHD [6],  and maximum likelihood estimation [7] which
are used for estimating the sinusoidal frequency with constant in
time. The last one are the sequential estimations such as the three
recursive least-squares (RLS) algorithms [8] and least mean square
(LMS) style algorithm [9] which are used for time varying signal
frequency. In [9],  So and Ching have proposed the RDFE adaptive
algorithm for a real tone in noise. The concept of that work is based
on the linear prediction property of real sinusoidal signals [10].
The RDFE is computationally efficient and it provides unbiased and
direct frequency measurements on a sequential basis. Besides, in
case of a complex sinusoidal signal frequency estimation, the batch
methods [11–14] and the first-order IIR adaptive notch filter (ANF)
based adaptive algorithm [15–17] can be applied. Recently, we have
proposed the modified complex plain gradient (MCPG) algorithm
[15]. The concept of the MCPG is based on minimizing the crosscor-
relation sequence between the FIR and IIR output sequences of the
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ANF. It has been shown that the MCPG can improve convergence
speed as compared with those of the Regalia’s method (Regalia) [16]
and complex plain gradient (CPG) algorithm [18] without increas-
ing any computations. However, due to the pole contraction factor �
of the ANF, the performances of adaptive algorithm based adaptive
ANF may  be poor if the selected value of � is inappropriate.

In this work, the linear prediction based adaptive algorithm [9]
is extended to the general case of a complex sinusoidal signal. As
a result, the CDFE adaptive algorithm is obtained. The CDFE is the
interesting algorithm because of simplicity and computationally
efficient and from the open literatures, the proposed CDFE has not
been developed so far. In addition, convergence behavior of the fre-
quency estimate in additive white Gaussian noise is analyzed and
derived in terms of steady-state MSE. Moreover, the stability bound
and number of iterations in which the CDFE reaches its steady-state
are also obtained. Finally, computer simulations are conducted to
corroborate the theoretical analysis and to demonstrate its com-
parative performances with the previous algorithms.

2. Problem formulation

Let us define a noisy complex sinusoid x(k) of amplitude A, fre-
quency ˝0, and phase �, which is of the form

x(k) = Aej(˝0k+�) + n(k), k = 0, 1, 2, ... (1)

Herein, A > 0 and ˝0 ∈ (0, �) are considered as deterministic but
unknown constants. � ∈ [0, 2�) is a uniform random variable.
n(k) = nR(k) + jnI(k) is assumed to be a zero-mean complex white
process, where nR(k) and nI(k) are zero-mean real white processes
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with identical but unknown variances of �2
n/2 and uncorrelated

with each other. The signal to noise ratio can be calculated by

SNR = A2

�2
n

. (2)

The objective of this work is to estimate the frequency ˝0 from
the observation x(k) using the linear prediction property of the
following signal:

s(k) = ej˝0s(k − 1).  (3)

Based on (3),  the linear prediction error [14] is given by

e(k) = x(k) − s̃(k) = x(k) − ej
˜̋

0x(k − 1), (4)

where s̃(k)  is the estimate of s(k), ˜̋ 0 is the estimate of ˝0 and to
be determined. For the batch method based frequency estimation
algorithms [11–14],  ˝0 is evaluated using a block of length N of
input sequence whereas for this work, it is estimated on a sample-
by-sample basis. It can be shown here that the mean square value
of (4) denoted by J( ˜̋ 0) is (see Appendix A)

J( ˜̋ 0) = E[e(k)e∗(k)] = 2A2(1 − cos[˝0 − ˜̋ 0]) + 2�2
n , (5)

where E[·] is the expectation operator and the asterisk (∗) denotes
the complex conjugation. Taking the first derivative of (5) with
respect to ˜̋ 0 and setting the obtained result to be zero, the opti-
mum  (opt) solution is derived as

˜̋ 0,opt = ˝0. (6)

In order to inspect that (6) is either global minimum or maximum
point of J( ˜̋ 0), the second derivative of (5) evaluated at ˜̋ 0 = ˝0
is tested and the result is

∂2
J( ˜̋ 0)

∂ ˜̋ 2
0

∣∣∣∣
˜̋

0=˝0

= 2A2. (7)

It is found that (7) is always positive for ˝0 ∈ (0, �) and thus (6) is a
global minimum of (5).  Apparently, minimizing J( ˜̋ 0) with respect
to ˜̋ 0 will give the desired solution ˝0, then unbiased frequency
estimation can be attained with the use of J( ˜̋ 0). In a practical
point of view, the sequential based estimation algorithm is needed
to minimize J( ˜̋ 0). Consequently, the computationally attractive
gradient-based adaptive algorithm [17] is applied to estimate ˝0
iteratively. From (5),  an instantaneous value denoted by J( ˜̋ 0(k)) is
approximated as

J( ˜̋ 0(k)) = e(k)e∗(k) (8)

where ˜̋ 0(k) is the estimate of ˜̋ 0 at a time instant k . The stochas-
tic gradient estimate is evaluated by differentiating J( ˜̋ 0(k)) with
respect to ˜̋ 0(k) and is given by

∂J( ˜̋ 0(k))

∂ ˜̋ 0(k)
= e(k)g∗(k) (9)

where

g(k) = jx(k − 1)ej ˜̋
0 . (10)

As a result, the proposed CDFE is derived as follows:

˜̋ 0(k + 1) = ˜̋ 0(k) + �Re{e(k)g∗(k)} (11)

where � is the stepsize parameter and positive constant by defini-
tion. Re{·} is the real part. The derived algorithm shown in (11) is
very simple and easy to implement in real-time applications. In the
next section, the steady-state analysis of the proposed algorithm is
addressed in terms of the closed form expression for steady-state
MSE  of the frequency estimate ˜̋ 0(k).

3. Algorithm analysis

Prior to deriving the MSE  of the frequency estimate, we  evaluate
the ensemble averaged value of the learning increment of (11):

E[Re{e(k)g∗(k)}] = Re{E[e(k)g∗(k)]}. (12)

Using (1), (4) and (10) in (12), we  obtain (see Appendix B)

E[Re{e(k)g∗(k)}] = −A2 sin( ˜̋ 0 − ˝0). (13)

It is obvious that ˜̋ 0 = ˝0 is a stationary point of (13). At steady-
state, ˜̋ 0 ≈ ˝0, the term sin(w)|w→0 � w and (13) thus becomes

E[Re{e(k)g∗(k)}] ≈ −A2( ˜̋ 0 − ˝0). (14)

Using (14) in (11), the difference equation for the convergence in
the mean of the frequency estimate is derived as follows:

˝0(k + 1) = ˝0(k) − �A2(˝0(k) − ˝0) (15)

where ˜̋ 0(k) in (11) is replaced by ˝0(k) ≡ E[ ˜̋ 0(k)] for notation
simplicity. Eq. (15) is the first-order difference equation whose
solution is given by (see Appendix C)

˝0(k) = (˝0(−1) − ˝0)(1 − �A2)k+1 + ˝0 (16)

where ˝0(−1) is an initial value of ˝0(k) at a time instant k = −1.
It is seen that the term (1 − �A2)k+1 appeared in the right-hand
side (RHS) of (16) tends to zero when k→ ∞ and (16) can then be
rewritten as follows:

˝0(k)|k→∞ = ˝0. (17)

Therefore it has been proved from (17) that the proposed CDFE is
unbiased. Referring to (16), we can predict the iteration number Ni
that is necessary to shift ˝0(k) from ˝0(−1) to ˝0 as follows. It is
well-known that the term (1 − �A2)k+1 exponentially decreases in
time. Thus we can write that

1 − �A2 = e−(1/�) (18)

where � is defined as a time constant and is derived from (18) as

� = − 1
loge(1 − �A2)

. (19)

As a result, the convergence time Ni of the CDFE is

Ni ≈ 5� (samples). (20)

To guarantee convergence and stability, stepsize � must be selected
so that |1 − �A2| < 1 is satisfied. Thus the bound for � in the mean
sense is easily derived as

0 < � <
2
A2
. (21)

From (19) and (21), some observations can be made: (i) the mean
convergence rate of ˜̋ 0(k) is independent of the observation noise
level; (ii) it is difficult to select a value of � to satisfy (21) when the
signal amplitude A is unknown; and (iii) when A is very high, the
upper bound of � is very small, resulting in obtaining a very slow
convergence rate. However, this situation hardly occurs in practice.
Naturally, (21) cannot be used to discuss the stability of the algo-
rithm since this simplified mean analysis cannot be extended to
fast adaptation. Moreover, the upper bound in (21) must be scaled
back due to background noise and nonstationary of the desired sig-
nal component in practice. However, this coarse boundary is useful
in practice and is deserving of attention, especially when the true
one is analytically infeasible.

It is also noted that the proposed CDFE does not take the form
of the Regalia method [16], say, the CDFE takes the form of gra-
dient descent procedure applied to the function E[Re{e(k)e∗(k)}]
whereas the Regalia method is adjusted according to the func-
tion E[Im{e(k)x∗(k)}] (see (1), [16] where Im{  · } is the imaginary
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