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In this paper, the problem of joint phase noise and channel estimation for OFDM systems over a fast
time-varying frequency-selective channel is explored. Each channel tap time-variation within one OFDM
symbol is approximated by a Basis Expansion Model (BEM). Joint estimation is performed on multiple
OFDM symbols via the Extended Kalman Filtering in order to exploit the time-correlation of the param-
eters. The data symbols are estimated by means of an iterative pilot-based algorithm. It is shown that,
with only 2 iterations, our algorithm outperforms the conventional one, and the performance approaches
that of the ideal case for which the channel response and phase noise are known.
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1. Introduction

Orthogonal frequency division multiplexing (OFDM) has
become a standard technique for broadband high speed commu-
nication systems, mainly the Mobile Worldwide Interoperability
Microwave Systems for Next-Generation Wireless Communication
Systems (WiMAX) and the Third-Generation Partnership Project
(3GPP) in the form of its Long-Term Evolution (LTE) project. How-
ever, it is well known that the OFDM modulation is very sensitive
to synchronization errors, yielding severe degradation since it
produces inter-carrier interference (ICI) and attenuates the desired
signal.

In this paper, we propose an algorithm for tracking the phase
noise (PHN) together with the channel taps in the presence of very
high mobility. Several papers investigated joint PHN and channel
estimation [1-3] for OFDM systems. In those papers, the channel is
assumed constant within an OFDM symbol. More recently, [4] pro-
posed an algorithm capable of dealing with the fast time-variations
of the channel within an OFDM symbol. Handling very high mobil-
ity is a major challenge for future communications. Since the signal
transmission under very high speed scenarios experiences serious
degradation, it is crucial to develop effective new techniques for
very high speed vehicular applications, such as high speed trains.

The algorithm of [4] is a basis expansion model (BEM)[5,6] based
algorithm which performs minimum mean square error (MMSE)
estimation separately for each received OFDM symbol. In other
words, the parameters are estimated based only on the present
received OFDM symbol y.. We propose here to perform estimation
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based on multiple OFDM symbols, i.e., our algorithm uses the com-
plete data set {yo, Vi --es yk}, which consists of the present and
the past received OFDM symbols. In doing so, the algorithm is able
to exploit the channel and PHN time correlation, which improves
performance. This can be done by means of the extended Kalman
filter [7].

This paper is organized as follows: Section2 introduces the
OFDM system with PHN and the BEM modeling. Section 3 describes
the state model and the Extended Kalman Filter. Section 4 covers
the algorithm for joint channel and PHN estimation together with
data recovery. Section5 presents the simulations results which
validate our technique. Finally, our conclusions are presented in
Section 6.

The notations adopted are as follows: Upper (lower) bold face
letters denote matrices (column vectors). [X], denotes the nth ele-
ment of the vector x, and [X],,» denotes the [n, m]th element of the
matrix X. It is noteworthy that vector and matrix indices start from
0 and not from 1. Iy is a N x N identity matrix. diag{x} is a diagonal
matrix with x on its main diagonal, diag{ X} is a vector whose ele-

ments are the elements of the main diagonal of X and blkdiag{ X, Y}
is a block diagonal matrix with the matrices X and Y on its main
diagonal. The superscripts (-)T and (-)H stand respectively for trans-
pose and Hermitian operators. Ex] - ] is the expectation over x, Jo(-)
is the zeroth-order Bessel function of the first kind and §y ,, is the
Kronecker symbol.

2. OFDM system description
2.1. OFDM system model

Consider an OFDM system with N sub-carriers, and a cyclic prefix
length Ng. The duration of an OFDM symbol is T=NTs, where T; is
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the sampling time and Np =N+ Ng. Letxy[n],n=—N/2,...,N/2-1be
the transmitted data symbol on the subcarrier n of the kth OFDM
symbol. The {x,[n]} are normalized symbols (i.e., E[x,[n]x{[n]] = 1).

We assume, without loss of generality, that PHN is present only
at the front of the receiver [8]. Let ¢(t) be the PHN process. It is
modeled as a Wiener process [9], with the 3 dB bandwidth param-
eter Afsgp. In the following, we consider the sampled version of the
PHN ¢[q] = (kT +qT;).

After transmission over a multi-path Rayleigh channel and in the
presence of PHN, the subcarrier n of the kth received OFDM symbol
yi[n] is given in the frequency domain (after removing cyclic prefix
and taking DFT) by [6,5]:

Vi = HiX + wy (1)

where X = [X[-N/2], x,[-N/2 +1],..., x[N/2 - 1]]T. Vi s
defined in a similar way as Xy. wy is a white complex Gaussian
noise vector of covariance matrix o2Iy and Hy, is the N x N channel
matrix. The elements of H; can be written as [10]:

[Hk]n,m =
Lt N-1 ' )
NZ[971271(m/Nfl/2)1ZO[Lk[(1-,]@1271('71fn/N)qeﬂPk[q]]
1=0 q=0

where {o;[q] =0y (kT+qT;),1=0, ... L—1} are the channel taps and
Lis the length of the channel impulse response. These channel taps
are wide-sense stationary (WSS), narrow-band zero-mean complex
Gaussian processes of variances o2, and with the so-called Jakes’
power spectrum of maximum Doppler frequency f; [11]. The aver-
age energy of the channel is normalized to one, i.e., Z,tol 051 =1.
Let us define the N x 1 vector:

oy = [oq[0], ..., [N =111 (3)
The correlation matrix of o, for the time-lag p, Rffl) =
E [a,,ka{"kfp} , is given by:

[RY ] m = 02 Jo(27f4Ts(n — m + pN)) (4)
2.2. Phase noise model

Reference [12] explains that an electronic component noise
within the oscillator affects the shape of the oscillator output signal
whose phase then deviates from the phase of the desired signal,
yielding the PHN process. Its behaviour depends on the type of
oscillator used, i.e., PLLs or free running oscillators. We consider in
this paper free-running oscillators, for which the PHN is modelled
as a continuous Brownian motion process[9]:

#rlal = delg — 1]+ vilql. =0, ... .,N -1 (5)

where v[q] is a Gaussian random variable with zero-mean and a
variance o2 = 4w Af345Ts. Stacking the N samples corresponding to

the kth OFDM symbol in a vector ¢ =[¢;[0], ..., ¢p[N—1]]T, we
obtain:
¢k = ¢k—1 + Vi (6)

where v, is a Gaussian N x 1 vector with zero-mean and a correla-
tion matrix V (see Appendix A):

Ny Np—1 Ng+1
Nb—l Nb Ng-‘rz
V=02 (7)
Ng+1 Ng+2 --- Np

2.3. BEM channel model

In each OFDM block, there are N samples to be estimated for each
channel tap due to the fast time-variation of the channel, yielding
a total of LN samples for the whole channel and for each block.
In order to reduce the number of parameters to be estimated, we
resort to the Basis Expansion Model (BEM). In this section, our aim is
to accurately model the time-variation of ¢ [q] from g=0to N—1
by using a BEM. The purpose of using a BEM is to approximate o
as the weighted sum of just a few basis function by, as follows:

al,k:B‘cl,k+§l,k (8)

where B=[by, ..., bp_1] is a N x D matrix that collects the D basis
functions by. Vector ¢ =[cx[0], ..., c;x[D—1]]" represents the D
BEM coefficients for the Ith channel tap of the kth OFDM symbol,
and & represents the corresponding BEM modeling error, which
is assumed to be minimized in the mean square error (MSE) sense
[13]. Under this criterion, the optimal BEM coefficients and the
corresponding model error are given by:

e = (B"B) ' Bay (9)
& k=N — Sy (10)

where S = B(B"B) "B is a N x N matrix.

Various traditional BEM designs have been reported to model
the channel time-variations, e.g., the Complex Exponential BEM
(CE-BEM), the Polynomial BEM (P-BEM) or the Karhuen-Loeve BEM
(DKL-BEM) for instance [5,14].

From now on, we can describe the OFDM system model derived
previously in terms of the BEM. Substituting (8) in (1) yields after
some algebra:

Vi = Hi(@y) - o + € +wy, (11)

where the LD x 1 vector ¢, and the N x LD matrix Hy, are given by:

T
— T T
Cr = [co,k’ e chl,k}
(12)

Hi(¢y) = % (Zo (@), - Zi-1.1(y)]
Z(d) = [Mo(@y) diagixy) £, ...,
Mp_(¢y) diagixy) fi]

where vector f; is the Ith column of the N x L Fourier matrix F, and
M,(¢y) is a N x N matrix given by:

(13)

[Fl = e—i2m(n/N-1/2)l (14)
N-1

[Mu($y)], o = > [Blgq e2mm-n/Nagidlal (15)
q=0

The second componentin(11), €, represents the approximation
error in the observation model.

3. AR model and extended Kalman filter
3.1. The AR model for c;

From (9), we get that the optimal BEM coefficients c; are corre-
lated complex Gaussian variables with zero-means and correlation
matrix given by:

RY = Eler ey, ] (16)
Hp) " pHR(P)R (RHR) !
= (B"B) 'B"R}’B(B"B)
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