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State estimation is a major problem in many fields, such as target tracking. For a linear Gaussian dynamic
system, the KF provides the optimal state estimate, in the minimum mean square error sense. In gen-
eral, however, real-world systems are governed by the presence of non-Gaussian noise and/or nonlinear
systems. In this paper, the problem of state estimation in the case of a linear system affected by a non-
Gaussian measurement noise is addressed. Based on the theoretical framework of the Gaussian sum
filters (GSF), we propose a novel static version of this filter that uses the well known « filter. The simu-
lation results show that the proposed filter has acceptable performances in terms of RMSE and a reduced
computational load, compared to the classical GSF.

© 2012 Elsevier GmbH. All rights reserved.

1. Introduction

The scientific community has attached a great attention to the
estimation theory in the past five decades. Many researchers have
focused on the objective of obtaining a solution that can be imple-
mented in a straightforward manner, for specific applications. The
commonly used technique is the Kalman filter (KF), which gives
an optimal estimation in the linear and Gaussian case. However,
in practice we often have to deal with densities which, from the
physics of a particular situation, are highly non-Gaussian, or den-
sities which may have Gaussian shape in the middle, but possess
small potent deviations from normality in the tails [5]. It is well
known that these deviations from normality may seriously degrade
the performance of a linear estimator [3]. Thus there appears to be
considerable motivation for considering non-Gaussian filters [5].

The Bayesian recursion relations which describe the behavior
of the a posteriori probability density function of the state of a
time-discrete stochastic system, conditioned on available mea-
surement data, cannot generally be solved in a closed-form when
the system is either non-linear or non-Gaussian. In [19] a combi-
nation of Gaussian density functions is introduced and proposed
as a meaningful way for approximating a non-Gaussian density. A
serious limitation in this approach is that the number of Gaussian
terms used to approximate the density function increases with
time. After this work, an extensive research has been conducted on
the Gaussian Sum Filter (GSF), which has become popular among
the target tracking and localization community [9,13]. The GSF
has also been used in digital transmission [8] and for nonlinear

* Corresponding author.
E-mail address: meche_abdelkrim@yahoo.fr (M. Abdelkrim).

1434-8411/$ - see front matter © 2012 Elsevier GmbH. All rights reserved.
http://dx.doi.org/10.1016/j.aeue.2012.09.003

channel equalization [18]. Other approaches combine the basic
GSF with other filters such as the Quadrature Kalman filter, the
unscented Kalman filter, or the particle Kalman filter [11,12,14].

The fact that a non-Gaussian minimum variance filter, and spe-
cially the GSF, is considerably more difficult to implement than the
Kalman filter, motivated the development of new approaches, see
for example [5]. What is sought is an estimation method for non-
Gaussian situations which is computationally attractive as well as
easy to understand and implement [5]. Our paper is a contribution
in this way.

With the advent of the Kalman filter, it was realized that the
optimum time-invariant second-order Kalman filter, for tracking
position and velocity, had the same architecture as the determinis-
tic ap filter. The af tracker is generally used for tracking targets
under steady-state stationary conditions, in which the tracking
problem is characterized by (a) a constant track rate, (b) a con-
stant radar measurement noise variance, and (c) a constant target
maneuverability [2]. The af tracker has become increasingly popu-
lar, due to its simplicity and low computational load requirements.
The af tracker was used for many other applications such as: face
tracking [6], intelligent vehicle [21], and recently for the problem
of tracking in wireless systems [20].

In this paper the o tracker is used within the GSF, for target
tracking in the presence of a non-Gaussian measurement noise;
the objective being the reduction of the complexity of the GSF.

2. State estimation of nonlinear and/or non-Gaussian
measurement noise systems

In state estimation, the dynamic system is assumed to be
governed by two models: (i) a process model describing the
evolution of a hidden state of the system (see Eq. (1)), (ii) a noisy
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measurement model for observables, related to the hidden state
(see Eq. (2)). The Bayesian framework is the most commonly used
approach for estimating the state of such systems. The Bayesian
approach calculates the a posteriori density of the state, obtained
from Bayes’ theorem, and therefore provides a complete statistical
description of the state variable. At a given time k we want to
estimate the state vector x;, using the available observation vector
z,. In the Bayesian case, the a posteriori density can be determined
recursively by using the previous estimate and the most recent or
new measurement data, according to (3):

X =F (X1, Ug_1) + Vg (1)

Zy = h(xy, ) + wy (2)
(x| Zi—1)p(Zk |Xi.)

X|Z,) = ———MM—————= 3

P(Xk|Zk) P2 t) (3)

p(x|Zk—1) = /P(Xk_l 1Z—1 )D(Xge|Xpe—1 )X 1, (4)

where Z,_; = {20, 21, - .., Zx_1} Tepresents the set of all measure-
ments up to time k-1 and the normalizing constant p(z|Z;_1) in
Eq. (3) is given by:

p(zklZk—1) = /P(Xk 1Z—1)p(zic 1% X, (5)

When non-Gaussian distributions are ascribed to the initial state
and/or to the noise sequences, p(x,|zy) is no longer Gaussian and it
is generally impossible to determine p(x;|Z;) in a closed form [12].

Two main approaches have been proposed in the literature
to tackle the problem of nonlinear/non-Gaussian state estimation
[14]: the Gaussian Sum Filter (GSF) [19] and the particle filter [10].
The later is more computationally demanding; since it is based
on Monte Carlo simulations and may require the generation and
propagation of a very large sample, especially in the case of high
dimensional systems [14]. Hence, in the present paper we limit our
interest to the GSF, with as an aim the reduction of its complexity.
The general problem, i.e. nonlinear/non-Gaussian case, was treated
in[19], where the authors employ the Bayesian approach to approx-
imate densities with a Gaussian sum, by minimizing some distance.
The resulting filter could be characterized as a set of Kalman fil-
ters, whereby a set of mean values and corresponding variances
are computed. The conditional state density (as well as other den-
sities of interest) is then reconstructed as a Gaussian sum, using
the aforementioned mean values and variances. As mentioned in
[5], one obvious disadvantage of this method is the problem of
finding an appropriate Gaussian sum representation, a task of con-
siderable delicacy; whereas the second difficulty is that of finding
some method for reducing the number of terms in the sum approx-
imating the densities, since this number grows exponentially with
the number of processed steps [5,19,23], a problem referred to as
the ‘growing memory problem’. A number of techniques can be
used to control the number of elemental terms in a Gaussian mix-
ture to a finite number or below a maximum number of terms [23].
Instead of carrying all the Gaussian member densities, we can either
disregard some of the densities with very small mixing weights, or
combine two or more similar densities. Furthermore, if needed the
Gaussian mixture can be collapsed into one equivalent Gaussian
term [23].

The theoretical determination of a weighted Gaussian sum
approximation for a non-Gaussian density is well detailed in [19]. It
can be shown that as the number of Gaussian components increases
the Gaussian sum approximation converges uniformly to any prob-
ability density function [19]. We report here only the principle idea.
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Fig. 1. Approximation of a Rayleigh distribution with two Gaussian densities.

For a given density function p(w), one can have an approximation
pm(w) given by:

Pm(W) = ViNy(w = my), (6)
i=1

where Ny, (w) denotes a zero mean Gaussian distribution with vari-
ance r; and where the weights y; satisfy:

m
Zy,-:l: y;=0 forall i (7)
i=1

To choose the mixture parameters, i.e. the weights y;, the vari-
ances r; and the means 7;, that give the “best” approximation pm(w)
to the density function p(w), we have to minimize a given distance
function, for example, the L norm [19]:

~+o0 m
1P~ PmlI" = / IP() = Y 1N (x = mp)|"dx, (8)
- i=1

o0

with n usually chosen equal to 2.

Alternatively, the maximum-likelihood estimates of the mix-
ture parameters can be numerically approximated by using the
Expectation Maximization (EM) algorithm [15]. An example of the
approximation of a Rayleigh distribution with two Gaussian densi-
ties, using this technique, is shown in Fig. 1.

It should be mentioned here that, like in [23], in our implemen-
tation of the GSF, the construction of the Gaussian sum described
above is performed once off-line, to get the Gaussian mixture
parameters for the observational error that are used afterwards in
the filtering procedure.

2.1. State estimation in the case of a linear system with
non-Gaussian measurement noise

As it is well-known, the a posteriori, density p(xy|z;) in (3) is
Gaussian for all k when the system is linear and the initial state
and plant and measurement noise sequences are Gaussian. For this
case the optimal solution is given by the Kalman filter. Further-
more, in the linear Gaussian problem, the conditional mean, i.e.
the minimum variance estimate, is a linear function of the mea-
surement data and the conditional variance is independent of the
measurement data. These characteristics are generally lost for a
system which is either nonlinear or non-Gaussian [19].

The system noise v in (1) may be modeled as a non-Gaussian
process, depending on the true system and how it is modeled. In
fact it is introduced in the filter to account for errors modeling in
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