Computer Communications 35 (2012) 1809-1818

Contents lists available at SciVerse ScienceDirect

computer
communications

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Cloud-based image processing system with priority-based data
distribution mechanism

Tin-Yu Wu?, Chi-Yuan Chen®, Ling-Shang Kuo ¢, Wei-Tsong Lee ¢, Han-Chieh Chao >4

2 Institute of Computer Science & Information Engineering, National Ilan University, Taiwan, ROC
b Department of Electrical Engineering, National Dong Hwa University, Taiwan, ROC

¢ Department of Electrical Engineering, Tamkang University, Taiwan, ROC

d Department of Electronic Engineering, National Ilan University, Taiwan, ROC

ARTICLE INFO ABSTRACT

Article history:
Available online 20 July 2012

Most users process short tasks using MapReduce. In other words, most tasks handled by the Map and
Reduce functions require low response time. Currently, quite few users use MapReduce for 2D to 3D
image processing, which is highly complicated and requires long execution time. However, in our opin-
ion, MapReduce is exactly suitable for processing applications of high complexity and high computation.
This paper implements MapReduce on an integrated 2D to 3D multi-user system, in which Map is respon-
sible for image processing procedures of high complexity and high computation, and Reduce is respon-
sible for integrating the intermediate data processed by Map for the final output. Different from short
tasks, when several users compete simultaneously to acquire data from MapReduce for 2D to 3D appli-
cations, data that waits to be processed by Map will be delayed by the current user and Reduce has to
wait until the completion of all Map tasks to generate the final result. Therefore, a novel scheduling
scheme, Dynamic Switch of Reduce Function (DSRF) Algorithm, is proposed in this paper for MapReduce
to switch dynamically to the next task according to the achieved percentage of tasks and reduce the idle
time of Reduce. By using Hadoop to implement our MapReduce platform, we compare the performance of
traditional Hadoop with our proposed scheme. The experimental results reveal that our proposed sched-

Keywords:

3D image

Cloud system
Multicast streaming
Image processing

uling scheme efficiently enhances MapReduce performance in running 2D to 3D applications.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing is composed of servers that provide high stor-
age capacity, high flexibility and high-computing performance [1-
5]. Because a cloud computing system has several computing serv-
ers, users are able to execute procedures that require large
amounts of computing resources, process a great deal of data on
the cloud, and complete the tasks by low-cost and low-power de-
vices. To process the procedures requested by users with cloud
computing, users can simultaneously enhance the performance of
the procedures. By using cloud computing for knowledge discovery
and data integration [6,7], Google thus proposed the MapReduce
programming model.

As a distributed parallel computing architecture presented by
Google, MapReduce automatically executes parallel computing
and partitions the data input by the developer. To simply write
Map and Reduce functions, the developer can execute a full set

* Corresponding author at: Institute of Computer Science & Information
Engineering, National Ilan University, Taiwan, ROC. Tel.: +886 39357400x251.
E-mail address: hcc@niu.edu.tw (H.-C. Chao).

0140-3664/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.comcom.2012.06.015

of computing procedures. MapReduce mainly include three func-
tions: Master, Map function and Reduce function. The Master peri-
odically obtains the status of the servers that run Map and Reduce
functions. The Master next divides the input data equally based on
the number of the Map function and distributes the sub-tasks to
the designated servers. The Map function converts the data desig-
nated by the Master to the intermediate data while the Reduce
function merges the intermediate data processed by the Map func-
tion together and creates the final result.

Derived from an implementation of Google’s MapReduce [8],
Hadoop consists of two chief components: Hadoop MapReduce
and Hadoop Distributed File System (HDFS). Hadoop MapReduce
is a distributed computing platform that includes JobNode, which
is responsible for allocating the developer’s tasks to the TaskNode
and is thus called the Master, and TaskNode, which is responsible
for executing the tasks designated by the JobNode, including the
Map and Reduce functions written by the developer. HDFS mainly
comprises NameNode and DataNode. The DataNodes are responsi-
ble for storing the results completed by the Map and Reduce func-
tions while the NameNode is responsible for establishing the index
stored in the DataNodes and recording the positions of the data
needed for the Map and Reduce functions to execute tasks.

http://dx.doi.org/10.1016/j.comcom.2012.06.015
mailto:hcc@niu.edu.tw
http://dx.doi.org/10.1016/j.comcom.2012.06.015
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

1810 T.-Y. Wu et al. / Computer Communications 35 (2012) 1809-1818

At present, most applications built on Hadoop are low-complex-
ity and high-density computing, like WordCount, Sort and so on
[9-11]. While running such applications, the Map function can
get the processed result within a very small amount of time and
the Reduce function mainly spends time waiting for the data pro-
cessed by the Map function and integrating the data. However,
using MapReduce to implement high-complexity and high-density
2D to 3D image processing process [12,13] may cost lots of time for
the Map function to analyze images and to convert the images to
intermediate data for the Reduce function to generate 3D images.
This paper implements MapReduce on an integrated 2D to 3D mul-
ti-user system, in which the Map function is responsible for
processing 2D effects, like gray scale [14], sobel [15], Gaussian
blur and corner detection [16], and converting the images to
intermediate data, while the Reduce function is responsible for
integrating the intermediate data generated by the Map function,
using 3D model construction algorithm [17] to construct the
model of the object, and presenting 3D images according to user
requirements.

Traditionally, the Map function converts the images to interme-
diate data so that the Reduce function can combine the images to-
gether for the final output. However, if the computing speed of the
Map function is too slow, the data will not be completed and the
Reduce function has to wait until the data is completed for further
combination. In such a manner, when the computing speed of the
Map function cannot cope with the Reduce function, the tasks of
the Reduce function will be greatly delayed, which moreover in-
creases the operation time.

In this paper, because large amounts of users simultaneously
uses MapReduce for 2D to 3D image processing, we present a solu-
tion to the above-mentioned problem to enhance the performance
of MapReduce in executing 2D to 3D image processing: Dynamic
Switch of Reduce Function (DSRF) algorithm, a scheduling scheme
on the Reduce function for users who compete simultaneously to
acquire Reduce resources to finish the tasks efficiently. With a pri-
ority mechanism, DSRF algorithm allows the Reduce function to
switch to different tasks according to the achieved percentage of
the tasks. In other words, when a combination task is not finished
and the Reduce function is waiting for the Map function to gener-
ate intermediate data, the Reduce function can switch to another
task to combine the image data first. For example, when the data
needed for the first task is not completed yet but the image data
of the second combination task is ready, the Reduce function pro-
cesses the second task first. After finishing the second combination
task, supposing the image data of the first and the third tasks is
both ready, the Reduce function processes the first task according
to the priority values. With our proposed scheme, the time spent
waiting for data can efficiently utilized by the Reduce function
and the delayed tasks also can be decreased to enhance the perfor-
mance of MapReduce in 2D to 3D image processing.

The rest of the paper is organized as follows. Section 2 intro-
duces the background and Section 3 presents our proposed system
architecture and DSRF algorithm. Section 4 includes the implemen-
tation and performance analysis awhile Section concludes this
paper.

2. Background
2.1. MapReduce

Proposed by Google, MapReduce is a distributed parallel com-
puting architecture designed for processing large amounts of
intensive data and its storage system is Google File System (GFS).
For users to process large amounts of data while searching for data
by the Google search engine, Google MapReduce provides a simple

programming interface for the developer to develop search engine
and processing searching procedures. MapReduce is composed of
three major components: Master, Map function and Reduce func-
tion. The Master is responsible for managing the back-end Map
and Reduce functions and offering data and procedures to them.
The Map function converts the data to intermediate data so that
the Reduce function can combine the intermediate data together
to obtain the final output.

Whenever the data is received and processed by the Map and
Reduce functions, there will be a record that includes a key and a
value. The key generated by the input processed by the Map func-
tion refers to the correlation between the data while the value on
the other hand means the processed message. When a task is di-
vided into several small tasks and handled by the Map function,
their correlations are not marked especially. But, one or several re-
cords are generated, including the key and the value, after the Map
function finishes processing the designated data. According to the
key produced by the Map function, the Reduce function collects the
data with the same key together and generates a value to form a
new set of key/value.

As shown in Fig. 1, the input file is cut into M chunks before the
MapReduce operation and the file size of each chunk ranges be-
tween 16 MB to 64 MB. The file chunks are copied to the file sys-
tem and one of the chunks is especially designated to the Master
to find the suitable idle server as the computing server. Next, after
the Master determines the servers responsible for the Map and Re-
duce functions, M Map functions and R Reduce functions are des-
ignated to the servers. According to the key/value of the input
data, servers responsible for the Map function deliver the pro-
cessed data to the developer’s Map function and store the Map re-
sult in the file system. The intermediate data output by the Map
function is cut into R pieces and their locations are returned to
the Master. Once receiving the locations of the data processed by
the Map function from the Master, servers responsible for the Re-
duce function read the data remotely, sort the keys and group the
values with the same key. The Reduce function calculates the
number of the single key and forwards the data to the developer’s
Reduce function to generate the final output. After the data is
completely processed, the Master notifies users to access the
result.

Because of the high-speed network and a storage system that
can store a large volume of data, MapReduce allows most search
engines to operate. The hardware of MapReduce belongs to an
open-source operating system and is controlled and maintained
by managers to reduce not only the cost of purchasing and main-
taining equipments but also the cost of developing MapReduce.
Different from centralized RAID-based SAN and NAS storage

User I:’ Process

Program Aerereeeeeeee 3 Communication
[vFs filefchunks
'
Master
T
,.-"H." .‘\'\
DFS
DFS
split
split output
Sp]it output
split output
split

wrile
Remote
read

read

Fig. 1. MapReduce framework.

Download English Version:

https://daneshyari.com/en/article/449023

Download Persian Version:

https://daneshyari.com/article/449023

Daneshyari.com

https://daneshyari.com/en/article/449023
https://daneshyari.com/article/449023
https://daneshyari.com

