
Defining a call control interface for browser-based integrations using
representational state transfer

Keith Griffin a,*, Colin Flanagan b

a Cisco, Oranmore Business Park, Oranmore, Co. Galway, Ireland
b University of Limerick, Limerick, Ireland

a r t i c l e i n f o

Article history:
Received 2 November 2009
Received in revised form 23 March 2010
Accepted 26 March 2010
Available online 2 April 2010

Keywords:
Open API design
REST
Call control
Interface
Browser

a b s t r a c t

While integrating telephony call control signaling into a desktop application is not a new concept, the
emergence of web browser-based applications drives the need for feature parity between desktop and
browser-based telephony call control applications. Desktop call control applications typically have the
advantage of being able to use local protocol stacks or API libraries. A browser-based application does
not have the same capabilities by default, especially when running on a constrained device. Traditional
telephony call control APIs and architectures do not currently lend themselves for use with web brow-
ser-based applications without requiring some form of download which is not desirable. Is it possible
to design a call control interface that can be consumed in browser-based applications natively without
requiring additional downloads? Representational State Transfer (REST) is a resource oriented architec-
tural style which, when used with HTTP as a uniform interface offers the possibility to use an existing
defined set of interfaces to manipulate state transitions for resources. We propose that the REST architec-
tural style can be used with an identified interface design methodology to define an interface for tele-
phony call control capable of being consumed by browser-based applications. Furthermore by utilizing
existing industry standards as an example, we suggest that existing standards can be extended to support
browser-based integrations using REST.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The ability to program communications services in IP telephony
environments introduced new possibilities for integration systems
[1]. It became possible to programmatically access communication
services which allowed third party developers to invoke the
functionality exposed via published interfaces on a communication
system. A third party developer is any developer outside of the
organization that developed the communication system and is
typically interested in using or extending the functionality of the
system within their application. In turn this allowed users of com-
munication systems greater flexibility in their usage of the system.
Enterprise telephony systems have been prevalent in business use
since the 1970s [2]. Using the PBX as being representative of
enterprise communication systems which have evolved through
IP telephony to Unified Communications [3–6] it can be seen that
the provision of telephony call control interfaces such as Microsoft
TAPI, Novell TSAPI, CT-Connect and Sun’s Java Telephony API [7–10]
can be used by a third party software developer to offer functional-

ity not offered natively by the communication systems itself. An
example of a third party communication integration via published
system interfaces is the provision of click to call services within a
desktop application. Any third party developer can use published
call control interfaces from a unified communications system to en-
able telephony call control within an application. The benefit to the
user is that they can control incoming and outgoing calls from with-
in their application rather than using the phone device directly. In
some cases unified communications vendors have implemented
their own integrations based on their own open interfaces demon-
strating that the same open interfaces can be used natively in addi-
tion to third party use [11,12]. Cleary these interfaces and the
applications and feature extensions that they offer have value, how-
ever the interfaces are predominantly aimed at desktop client
applications where a local protocol stack or other local component
can be assumed. What if integration with a web browser-based
application is required? Furthermore, what if the browser-based
application is running on a constrained device? While a browser-
based application running on a computer desktop might have the
resources available to work-around a given interface by supporting
a local protocol stack or other downloaded component, the same
cannot be assumed for a browser-based application running on a
constrained device. Representational State Transfer (REST) [13], is

0140-3664/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.comcom.2010.03.029

* Corresponding author. Tel.: +353 87 650 4145.
E-mail addresses: kegriffi@cisco.com (K. Griffin), colin.flanagan@ul.ie

(C. Flanagan).

Computer Communications 34 (2011) 140–149

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/ locate/comcom

http://dx.doi.org/10.1016/j.comcom.2010.03.029
mailto:kegriffi@cisco.com
mailto:colin.flanagan@ul.ie
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom


a hybrid architectural style for distributed hypermedia systems
which uses a constrained interface to manipulate the state of any
given resource. In this paper, we propose that the principles of a
REST based system can be used to define a telephony call control
interface suitable for consumption in browser-based communica-
tion integrations. Furthermore, we propose that this interface can
be used without requiring any other local client software compo-
nent other than a HTTP capable browser. Additionally, we identify
and apply a methodology suitable for the design of such interfaces.

The paper is organised as follows. First, we present the neces-
sary background and state of the art describing the problem do-
main of telephony call control in browser-based integrations. We
introduce the principles of REST in the background section. Next,
we look at the interface design by reviewing an existing telephony
call control standard and outlining a methodology for REST based
interface design, before applying this methodology to define our
proposed interface. After presenting the proposed interface design,
we evaluate the interface by applying a common call control use
case. Finally, we conclude by providing the reader with an over-
view of our findings and outline future work.

2. Background

2.1. Enterprise telephony call control

Computer Telephony Integration (CTI) is based on the exchange
of messages between computer and telephony systems. It is not a
new concept, with implementations in the industry available since
the 1980s. It is however an important concept in the enterprise
communications environment and continues to be a commonly
used technology in modern deployments. While CTI covers a broad
range of specific integrations this research considers desktop based
call control as it can be related to browser-based call control. In
this context, CTI refers to the signalling associated with the call,
hence the term call control. CTI does not imply control of the media
associated with the call such as the voice path or the media termi-
nation of the voice-path. Later, we will define a representative sub-
set of call control functionality which will be used to test the
assertion that call control interfaces can be defined for use within
a browser-based application. While introducing telephony integra-
tion in a browser-based environment using REST is a new para-
digm it does not change the features of a telephony system.
Therefore, rather than creating yet another CTI interface, we iden-
tify an established and accepted industry standard as a basis for
the interface design. The standard chosen is Computer Supported
Telecommunications Applications (CSTA) which is an accepted
and current industry standard [14]. CSTA defines interfaces related
to all aspects of enterprise telephony including an interface called
‘‘Call Control Services and Events”. CSTA is chosen as an example of
an independent, well formed and progressive interface. Indepen-
dent, as the standard is driven by open working groups without
single vendor influence. Well formed, as the standard has been
through three major phases of revision and progressive as the stan-
dard continues to evolve and considers new forms of interface pre-
sentation such as SIP-CSTA [15].

2.2. Browser-based communication integration

Having introduced the concept of a communications integration
system it is necessary to focus on one particular consumer of com-
munication integration system interfaces which are not well
served by current interface implementations, namely browser-
based web clients. Call control CTI clients are typically installed
with all the required run-time software components to facilitate
bi-directional communication between the client and server in

real-time. A study of the third party CTI client implementations
previously identified showed that remote procedure call (RPC)
[16] and remote method invocation (RMI) [17] between the client
and server are common approaches. While these approaches ap-
pear to work well for installed desktop clients, a different approach
beyond the current state of the art is required for browser-based
web clients on constrained devices. Technically it would be possi-
ble to take a client side component such as a protocol stack and
embed it in a web client in the form of a once off or infrequent
download. Depending on the size and nature of the download this
may or may not be acceptable for browser-based deployment. Sev-
eral factors may influence the acceptability of a component down-
load ranging from IT policy to performance to security. Technical
factors include the basic ability of a device to accept a component
download or handle client side call control processing. For the pur-
pose of this research we introduced a technical constraint. The con-
straint is that no client side download will be permitted apart from
the browser itself. In addition to this constraint, no extensions to
the browser or browser plug-in component may be used. It is in-
tended that by placing this constraint on the research that the out-
put will be applicable to a range of scenarios for fixed and mobile
computing where only a web browser is available to consume a
communications integration interface such as CTI call control. It
has been shown that automated call handling and user settings
can be addressed via REST [18] but these synchronous operations
based on user and device settings differ from real-time communi-
cation interfaces as in the case of telephony call control. Also, some
communications integration interface definitions like CSTA, have
been extended to offer SOAP based Web Services [19]. While such
an approach is widely accepted for desktop browser-based envi-
ronments it will break the constraint outlined above as it would in-
volve the download of the Web Service Definition Language
(WSDL) and/or the use of a local SOAP stack in the browser-based
client application or as a plug into the browser. In order to work
within our constraint the browser-based communication integra-
tion mechanism chosen must work within the constraints of the
browser itself. A safe way to do this is to work strictly within the
constraints of the standards that a web browser implements, in
particular HTTP [20], thus extending the reach of telephony call
control systems to clients that cannot be addressed currently.

2.3. An introduction to representational state transfer

Representational State Transfer or REST as it has become com-
monly known, is a hybrid architectural style for distributed hyper-
media systems. It is not dependent upon any particular protocol
but typically uses HTTP. This means that it is possible to create a
REST based system that is not built upon HTTP; however, most
practical implementations of REST are built using HTTP. REST is
not a standard however it does prescribe the use of standards,
including but not limited to HTTP, URI, XML and HTML.

2.3.1. REST design principles
The following are design principles of a REST based system.

� Stateless: Every request from client to server must contain all
the information required to execute the request and must not
rely on information known to the server.
� Uniform interface to support state transfer consisting of:
� A constrained set of well defined operations e.g. the HTTP

methods GET, PUT, POST, DELETE.
� A constrained set of content types e.g. text/xml, image/jpeg.
� Client server pull interaction: consuming clients pull

representations.
� Uniquely Named Resources: A URI is used to name the

resources which comprise the system [21].

K. Griffin, C. Flanagan / Computer Communications 34 (2011) 140–149 141



Download English Version:

https://daneshyari.com/en/article/449075

Download Persian Version:

https://daneshyari.com/article/449075

Daneshyari.com

https://daneshyari.com/en/article/449075
https://daneshyari.com/article/449075
https://daneshyari.com

