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We  present  a novel  algorithm  for the  efficient  numerical  computation  of the  Floquet  quantities  (eigen-
values,  direct  and adjoint  eigenvectors)  relevant  to  the  assessment  of the  stability  and  noise properties  of
nonlinear  forced  and  autonomous  circuits.  The  approach  is  entirely  developed  in  the  frequency  domain
by  means  of the application  of  the  Harmonic  Balance  technique,  thus  avoiding  lengthy  time–frequency
transformations  which  might  also  impair  the  accuracy  of  the  calculated  quantities.  An  improvement  in
the computation  time  around  one  order  of  magnitude  is  observed.
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1. Introduction

Floquet analysis, although a classical topic in the mathemati-
cal literature [1,2], is the object of a renewed interest in the circuit
simulation community because of the central role played in two
important areas of nonlinear circuit performance assessment: the
rigorous study of phase and amplitude noise in oscillators [3–8],
and the appraisal of the stability of the time-periodic working
point solution of a nonlinear circuit, either driven or autonomous
[1,2,9–13].

Floquet theorem was originally derived with reference to Ordi-
nary Differential Equations (ODEs) [1],  and recently has been
extended to the case of index-1 Differential Algebraic Equations
(DAEs) [14]. This step has significant practical importance, since
DAE is the general form of the describing equations obtained from
the application of nodal analysis to a nonlinear circuit made of
lumped components [15]. In general, the circuit nodal equations
can be cast in the form⎡
⎢⎣ L1

dx

dt

d
dt

f (x(t))

⎤
⎥⎦ =

[
L2x

g(x(t), t)

]
+

[
c(t)

d(t)

]
(1)

where x(t) ∈ R
n is the unknown vector, L1, L2 ∈ R

m×n with m ≤ n
are constant matrices describing the linear part of the circuit, c(t) ∈
R

m and f , g, d ∈ R
n−m. The nonlinear functions f, g are due to the
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nonlinear elements in the circuit. The forcing terms in (1) (if any)
are time-periodic functions of period T, and a non-trivial T-periodic
solution (limit cycle) xS(t) is assumed to exist.1

Floquet theorem [14] applies to the linearization of (1) around
xS(t), i.e. it is a tool to characterize the effect of a small-change per-
turbation applied to the circuit limit cycle (see [11], and references
therein). The main result is that the stability of xS(t) is dependent
on a set of n (complex) numbers �k (k = 1, . . .,  n) called the Flo-
quet multipliers (FMs) of xS(t): if all of them (or, for oscillators, all
but one which is exactly equal to 1) are placed strictly inside the
unit circle of the complex plane, the limit cycle is asymptotically
stable; on the other hand, if at least one of them has magnitude
larger than one, the solution is unstable. The computation of the
FMs  provides therefore an assessment of the stability of the cir-
cuit working point. On the other hand, each FM is also associated
to a (direct) Floquet eigenvector uk(t) (k = 1, . . .,  n) which, together
with the adjoint Floquet eigenvectors vk(t) (k = 1, . . .,  n) associated to
the adjoint linearized system2, are the basic ingredients required
to perform oscillator noise analysis [3,7,8]

The calculation of the Floquet multipliers and eigenvectors can
be performed either in the time or in the frequency domain. The
problem has been traditionally tackled for ODEs in the time domain
[9,11,16,17], devising numerical approaches with various degrees
of efficiency and accuracy. On the other hand for many applications
spectral techniques, such as the harmonic balance (HB) method,

1 The same hypothesis holds for the case of autonomous circuits, for which of
course no source term is present.

2 Both the direct and adjoint linearized systems share the same FMs  [1,14].
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provide significant advantages for the determination of the cir-
cuit limit cycle [15,18,19].  A general purpose, frequency-domain
algorithm based on the HB approach for the determination of the
direct and adjoint Floquet quantities was proposed in [10] and [20],
respectively. In both cases, a generalized eigenvalue problem has
to be solved, thus requiring a numerical procedure whose com-
putational burden is O(N3) where N is the matrices size. Notice
that for HB, N = n(2NH + 1) where NH is the number of harmon-
ics included in the simulation besides DC. In this contribution, we
propose a numerical approach applicable to both the direct and
adjoint problem which, making use of fast matrix manipulation
completely taking place in the frequency domain, allows for a sig-
nificant advantage with respect to previous algorithms by reducing
the computational complexity to O(N2). The algorithm ultimately
corresponds to a general methodology for constructing a linear ODE
fully equivalent to the linearized DAE, thus extending the applica-
bility of the approach in [9,16,17].

2. Fundamentals

We provide here the fundamentals required to effectively
present the numerical procedure we developed. Linearization of (1)
around the limit cycle xS(t) leads to a Linear Periodic Time Varying
(LPTV) system of the form

d
dt

[C(t)z] = A(t)z(t) (2)

where C, A ∈ R
n×n are T-periodic matrices (since they correspond

to the Jacobian of the full system calculated into xS(t)) and z(t) ∈ R
n

represents the perturbation of the limit cycle. In many cases, matrix
C(t) is not full rank although we assume that the rank � ≤ n is
independent of time (index-1 DAE) [14]: this has important con-
sequences on the calculation of the Floquet quantities, as we will
see shortly.

According to the generalization of Floquet theorem to DAEs
[14], (2) is solved by � independent functions taking the form
z(t) = exp (�kt)uk(t) (k = 1, . . .,  �), where �1, . . .,  �� are the Floquet
exponents (FEs) of (2) (and �k = exp (�kT) are the corresponding Flo-
quet multipliers), uk(t) is T-periodic and is called the direct Floquet
eigenvector associated to �k. Notice that � < n corresponds to the
appearance of n − � FEs equal to −∞.

On the other hand, the adjoint system to (2) reads [14]

CT(t)
dw

dt
= −AT(t)w(t) (3)

and is solved by a linear combination of the � independent func-
tions w(t) = exp(−�kt)vk(t), where vk(t) is again T-periodic and is
called the adjoint Floquet eigenvector associated to �k.

2.1. The HB technique

The HB technique is based on representing each scalar time
periodic function ˛(t) through the (truncated) Fourier series

˛(t) = ˜̨ 0,c +
NH∑
h=1

[
˜̨ h,c cos(hω0t) + ˜̨ h,s sin(hω0t)

]
(4)

where ˜̨ 0,c represents the DC component of ˛(t). The har-
monic components are collected into a vector of size 2NH + 1
˜̨  = [ ˜̨ 0,c, ˜̨ 1,c, ˜̨ 1,s, . . . , ˜̨ NH,c, ˜̨ NH,s]T, and put in one-to-one cor-
respondence with a set of 2NH + 1 time samples (distributed
into the interval ]0, T]) of ˛(t), collected into vector ˆ̨  =
[˛(t1), ˛(t2), . . . , ˛(t2NH+1)]T. The relationship between ˆ̨  and ˜̨  is
provided by an invertible linear operator �−1 corresponding to the
discrete Fourier transform (DFT) [15]

ˆ̨  = �−1�̃ ⇔ �̃ = ��̂. (5)

Notice that the matrix representation is used for formal derivation
only: in the actual implementation the more efficient DFT algorithm
[15] is used.

Denoting as ˙̨ (t) the first derivative of ˛(t), trivial calculations
yield the Fourier representation of the derivative as a function of
the Fourier components of the original function

˜̨̇
 = � ˆ̇� = ��̃, (6)

where � ∈ R
(2NH+1)×(2NH+1) is a tridiagonal costant matrix propor-

tional to ω0 (see [10,15] for the explicit representation).
In case of an n size vector ˛(t), (5) and (6) are easily general-

ized by considering a vector of time-sample vectors and frequency
components, defined by expanding each element ˛j(t) (j = 1, . . .,  n)
into the time sample ˆ̨ j and similarly for the harmonic components.
One finds

ˆ̨  = �−1
n ˜̨ ˜̨̇

 = �n ˜̨ , (7)

where �−1
n and �n are block diagonal matrices built replicating n

times the fundamental operators �−1 and �,  respectively.
More attention is required to derive the HB representation of

ˇ(t) = �(t)˛(t) and of its time derivative, where �(t) is a T-periodic
matrix and ˛(t) a T-periodic vector. Denoting as �̂ the n × n block
diagonal matrix built expanding each element �h,k(t) of �(t) as a
(2NH + 1) × (2NH + 1) diagonal matrix formed by the time samples
�̂h,k, we have

˜̌ = �̃�̃ ˜̇� = �n
˜̌

 = �n�̃�̃ (8)

where �̃ = �n�̂�−1
n . The transformation leading to �̃ results into

the sum of a Toepliz and of a Hankel matrix (see [21] for details),
whose building blocks are the Fourier coefficients of the elements
of �(t): in other words, �̃ can be easily assembled after evaluating
(through DFT) the Fourier coefficients of the elements of �(t).

3. Previous work

Substituting z(t) = exp (�kt)uk(t) into (2) and w(t) =
exp(−�kt)vk(t) into (3), the Floquet direct and adjoint eigen-
problems are made explicit in the time domain [10,20]

�kC(t)uk(t) = A(t)uk(t) − d
dt

[C(t)uk(t)] (9)

�kCT(t)vk(t) = AT(t)vk(t) + CT(t)
dvk(t)

dt
. (10)

After time-sampling, the use of (6) and (8) allows to convert (9) and
(10) in the spectral domain

�kC̃ũk =
[
Ã − �nC̃

]
ũk (11)

�kC̃Tṽk =
[
ÃT + C̃T�n

]
ṽk. (12)

Notice that C̃T = �nĈ
T
�−1

n is not simply the transpose of C̃ (the
same holds for ÃT). Nevertheless, since Ĉ is made of diagonal blocks
(deriving from the time-sampling of the elements of C(t)), C̃T can
easily be built from the components of C̃ avoiding any further cal-
culation [20]. In summary, the Floquet quantities can be calculated
as the solution of the generalized eigenvalue problems in (11) and
(12), whose matrices correspond to the Jacobians of the HB problem
defining the limit cycle, and therefore are available as a byproduct
of the Newton iterations normally exploited for the determination
of xS(t).

The solution of the generalized eigenproblems (11) and (12)
yields n(2NH + 1) FEs (and the corresponding direct and adjoint
eigenvectors). In an ideal system, i.e. if the number of harmonics
is large enough, the FEs should be positioned in the complex plane
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