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Over recent decades, environmentalmodels have gradually replaced traditional, qualitative land evaluation in re-
gional land use analysis (RLUA). This changed the data requirements as the environmentalmodels require quan-
titative, high resolution and spatially exhaustive data. As resources to collect new data are limited, RLUA often
relies on already existing data. These data oftendo notmeet thedata requirements for the environmentalmodels.
Hence, a gap developed between the supply and demand of data in RLUA. This study aims to explore and analyse
the effect of using different soil datasets in a case study for Machakos and Makueni counties (Kenya). Six soil
datasets were available for the study area and showed large differences. For example, average clay percentages
varied between 11.7% and 44.4%. The soil datasets were developed under different assumptions on e.g., soil var-
iability. Four assumptionswere verified using a field survey. An ongoing RLUA, theGlobal Yield GapAtlas (GYGA)
project, was taken as a case study to analyse the effect of using different soil datasets. The GYGA project aims to
assess yield gaps defined as the difference between potential or water-limited yields and actual yields. Rain-fed
maize is the dominating cropping system inMachakos andMakueni counties. The GYGA project uses soil data for
the selection of the most dominant maize growing areas and to simulate water-limited maize yields. The proto-
cols developed by the GYGA project were applied to the six soil datasets. This resulted in the selection of six dif-
ferent maize-growing areas and different water-limited maize yields. Our study clearly demonstrates the large
differences between soil datasets. Main challenges with soil data in RLUA are: i) understand the assumptions
in soil datasets, ii) create soil datasets that meet the requirements for regional land use analysis, iii) not only
rely on legacy soil data but also collect new soil data and iv) validate soil datasets.
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1. Introduction

There is an increased pressure on our natural resources due to
e.g., population growth, economic growth and climate change. Globally,
the increase in agricultural production does not keep upwith population
growth resulting in a decline in food security (Van Ittersum et al., 2013).
This increases the need to study the interactions between our natural re-
sources and land use. To study these interactions, regional land use anal-
ysis (RLUA)was adapted. In the past, RLUAmainly focused on qualitative
land evaluation. The change in RLUA in combination with the increased
information technology and data availability opened the possibility to
use environmental models for RLUA (e.g., models simulating crop
growth, soil erosion, water quality, land use change) (McBratney et al.,
2000). These developments coincided with changing data requirements.
In general, the environmental models need quantitative, high resolution
and spatially exhaustive data. As many research programmes lack the
resources to collect new data, most RLUAs rely on already existing
data. However, existing soil data do often not match with the data

requirements resulting in a gap between the supply and demand of soil
data in RLUA. This gap may lead to operational problems in RLUA. This
study aims to identify the main challenges with soil data in RLUA by ex-
ploring and analysing the effect different soil datasets have on RLUA.

In general, we distinguish four types of soil data:

1. Conventional soil survey (CSS). The CSS is originally established for
qualitative land evaluation and is the most common type of soil
data. Spatial soil variability is represented by discrete mapping units.
Each mapping unit is described by one (in the case of a consociation)
or more (in the case of a soil complex or association) soil types. The
boundaries of the mapping units in CSS are abrupt (Cambule et al.,
2013; Heuvelink andWebster, 2001). The compound mapping units
are described by multiple soil types for which often relative area cov-
erages are provided. Less abundant soil types are sometimes left out.
Soil types are characterized by soil morphology and, chemical and
physical analyses of representative soil profiles, before they are classi-
fied using e.g., Soil Taxonomy (Soil Survey Staff, 2014) or World
ReferenceBase (IUSSWorkingGroupWRB, 2014). By providing repre-
sentative soil profile descriptions for the soil types, their internal
variation is often ignored, i.e., the soil types are considered to be ho-
mogeneous. Nowadays, 31% of the global land surface is mapped by
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CSS at 1:1 million scale or larger (Nachtergaele and Van Ranst, 2003).
The reconnaissance survey of the Kapenguna area (Gelens et al., 1976)
is a good example of a CSS in Kenya. Those conventional exploratory
maps and more general maps like the 1:2 million scale provisional
soil map of East Africa (Milne et al., 1936) formed the basis for the Ex-
ploratory Soil Map of Kenya (Sombroek et al., 1982).

2. Point data. These data are available from a wide range of sources.
They can accompany the CSS as representative soil profiles, but
they can also be provided along with e.g., agronomic experiments.
Point data can be qualitative or quantitative. For example, the Fertil-
izer Use Recommendation Project (FURP) in Kenya carried out a
large number of agronomic experiments in different agro-
ecological zones in Kenya (FURP, 1987; FURP, 1994). Each experi-
ment was accompanied by a soil profile description including chem-
ical and physical soil characteristics.

3. Digital soil maps. Digital soil mapping (DSM) spatially predicts soil
characteristics by deriving statistical relationships between observed
soil characteristics and auxiliary information representing the soil
forming factors (e.g., digital elevation models representing topogra-
phy and satellite imagery representing vegetation) (McBratney
et al., 2003). The quality of digital soil maps depends on the quality
and sampling density of the soil data, on the quality of the auxiliary
information, and on the used mapping techniques. An example of
DSM in Kenya is presented by Mora-Vallejo et al. (2008).

4. Remotely sensed soil data. These soil data are derived from a broad
range of sensing platforms and sensor types. This technique is a rela-
tively new inventory technique. Ge et al. (2011) and Mulder et al.
(2011) provide an overview of the various techniques that are avail-
able. Most remote sensing studies so far have been performed locally
(e.g. Palacios-Orueta and Ustin, 1998) and no standardized remote
sensing based methodology for soil inventory has been established
yet (Mulder et al., 2011).

Each soil data type describes soil variability in its own specific way
and presents opportunities, but also drawbacks for its use in RLUA. For
example, the CSS gives spatially exhaustive data and quantitative data
come from representative soil profiles. However, CSS does not describe
the soil variability within a soil type and the scale of CSS is often not de-
tailed enough for RLUA (Nachtergaele and Van Ranst, 2003). Point data
provide quantitative data, but the data are not spatially exhaustive. Dig-
ital soil maps provide quantitative, spatial continuous data. However,
the soil characteristic maps resulting from digital soil mapping are
often established independently. In comparison to conventional soil
surveys, digital soil mapping has no unified (soil classification) system.
Different digital soil maps of the same area can therefore vary depend-
ing on which source data are used, which assumptions are made and
how the data are processed.

Our study focuses on Machakos and Makueni counties (Kenya), a
semi-arid area where agriculture and food security play an important
role. For this area, six soil datasets are compiled from available soil data
sources. The study consists of three steps. In the first step, the six soil
datasets are compared. In the second step, we verify assumptions that
are made to establish soil dataset using a field survey. In the third step,
the effect of selecting a soil dataset for a study on RLUA is analysed. The
Global Yield Gap Atlas (GYGA) project1 was taken as a case study. GYGA
assesses yield gaps to study food security and guidepotential investments
in agricultural research and development (Van Ittersum et al., 2013).

2. Materials and methods

2.1. Study area

The major staple food crop in Kenya is maize. The total harvested
maize area is estimated at 2.16 million ha with an average maize yield

of 1.8 tons/ha (FAO Statistics Devision, 2015), which is far below the av-
erage water-limited maize yield potential of approximately 7.1 tons/
ha1. Main causes for this large yield gap are i) nutrient depleted soils,
ii) low application of mineral fertilizer, iii) scarcity in manure, iv) vari-
able rainfall patterns, and v) lack of resources to improve degraded
soils (Claessens et al., 2012). Narrowing the gap between the actual
yield and the potential yield is at the top of the agenda of Kenyan gov-
ernmental agencies. Problems faced by the Ministry of Agriculture and
Ministry of Livestock and Fisheries Development (2004) are for exam-
ple: lack of resilience during droughts and floods, low and declining fer-
tility of land, crop diseases, and lack of coherent land policies.

An importantmaize cropping area in Kenya,which is also selected as
a study site by the GYGA project, is located in the Eastern Province and
includes Machakos and Makueni counties (Fig. 1). The counties are
1.35 million ha and half of that area is under agriculture (Mora-Vallejo
et al., 2008). The area is hilly with elevations varying between 418 m
and 2053 m above sea level. It has a semi-arid climate with low and
highly variable rainfall distributed over two seasons. Average rainfall
for each season ranges from 100 mm to 350 mm and the mean annual
temperature varies between 15 °C and 25 °C. Themain geological parent
material originates from the Basement System and contains old intru-
sive and metamorphic rocks. Deep and friable soils developed in this
parent material. The soils are inherently poor in nutrients with the ex-
ception of some volcanic areas. The textures range from clay to sandy
clay and the soils generally have good drainage. According to the
Kenya Soils and Terrain Database (KenSOTER) (Batjes and Gicheru,
2004), themost dominant soil types inMachakos andMakueni counties
are Rhodic Ferralsols, Chromic Cambisols, Eutric Vertisols, Haplic
Lixisols and Chromic Luvisols.

The study area has several seasonal rivers and the permanent Athi
River in the East. Due to fast runoff in seasonal rivers and steep topogra-
phy around the permanent river, the possibilities for irrigation are lim-
ited. Maize is often intercropped with beans, legumes and sorghum.
Other cultivated crops are vegetables, fruits and root crops. Mixed
smallholder farming systems are prevalent in the area. Due to increased
agricultural activities in the early 1930s, caused by population growth,
soil erosion took place (Tiffen et al., 1994). Governmental enforcement
in erosion control, e.g. by terracing agricultural fields and reforestation
of highly degraded areas and steep areas, slowed down the land degra-
dation. Despite these measures and the willingness of people to volun-
tarily maintain the terraces (De Jager et al., 2005; Tiffen et al., 1994), the
yields are low. Nowadays, still 59.6% of the population in Machakos and
64.1% in Makueni fall below the poverty line of 1 US$/person/day
(Commission on Revenue Allocation, 2011). These numbers underline
the need for RLUA.

1 http://www.yieldgap.org/. Fig. 1.Machakos and Makueni study area in the Eastern Province of Kenya.
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