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a b s t r a c t

We describe a generalised downscaling and data generation method that takes the outputs of a General
Circulation Model and allows the stochastic generation of daily weather data that are to some extent
characteristic of future climatologies. Such data can then be used to drive any agricultural model that
requires daily (or otherwise aggregated) weather data. The method uses an amalgamation of unintelli-
gent empirical downscaling, climate typing and weather generation. We outline a web-based software
tool (http://gismap.ciat.cgiar.org/MarkSimGCM) to do this for a subset of the climate models and scenario
runs carried out for the 2007 Fourth Assessment Report of the Intergovernmental Panel on Climate
Change. We briefly assess the tool and comment on its use and limitations.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The availability of weather data continues to be a serious con-
straint to undertaking many applied research activities in the
realm of agriculture, particularly in developing countries. Because
weather is a primary determinant of agricultural production,
weather data are needed for many different types of analysis in
agricultural science. In addition to the data availability problem,
the format in which data are available may be a considerable con-
straint to their widespread use. Nowhere is this more apparent
than in agricultural impacts modelling, particularly in relation to
utilising the outputs of climate models to evaluate possible im-
pacts of climate change on crop and livestock production systems
over the coming decades. The outputs from General Circulation
Models (GCMs), climate models that project into the future, are al-
most never in a form that can be used directly to drive agricultural
models. Considerable processing has to be gone through before
such data can be meaningfully used, both for assessing possible
impacts and for evaluating adaptation options. This processing
generally involves downscaling the outputs from coarse-scaled
GCMs to higher spatial and temporal resolutions. Various methods

of downscaling exist, each with its own advantages and disadvan-
tages, and each appropriate for different situations (Wilby et al.,
2009). Reliable downscaling depends on the availability of reliable
historical weather and climate data. Unfortunately, particularly in
many developing countries, ground-based observation has de-
clined considerably in the last several decades (Funk et al., 2011).
Satellite technology is advancing rapidly and some aspects of
weather and climate can be measured this way but such data are
a complement to ground-based observation and not a substitute.

Here we describe a generalised downscaling and data genera-
tion method, which takes the outputs of a GCM describing a partic-
ular future climatology and allows the stochastic generation of a
core set of daily weather data that are to some extent characteristic
of this future climatology. This builds on previous methods, out-
lined and applied in Thornton et al. (2006), which utilised data
from a suite of climate models used for the Third Assessment Re-
port of the Intergovernmental Panel on Climate Change (IPCC,
2001). These methods have been modified to use outputs from
the later generation of climate models utilised in the IPCC’s Fourth
Assessment Report (IPCC, 2007). The approach is fast and general-
isable, and uses a mixture of methods, including simple interpola-
tion (what Wilby et al. (2009) call ‘‘unintelligent downscaling’’),
climate typing and weather generation. Below we describe a
web-based tool that uses these methods with a user interface in
Google Earth and provides the user with daily weather data for
current and future climatologies, which can then be used directly
to run some widely-used crop models.
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2. Materials and methods

2.1. Processing the GCM data

Outputs from many GCMs are available in the public domain,
notably in the World Climate Research Program’s (WCRP’s) Cou-
pled Model Intercomparison Project phase 3 (CMIP3) multi-model
dataset. This dataset contains model output from 22 of the GCMs
used for the Fourth Assessment (AR4; see Table 8.1 in Randall
et al., 2007) and for a range of scenarios including the three scenar-
ios reported on in the IPCC’s Special Report on Emission Scenarios
(SRES) used in the AR4. They are: A2, a high-greenhouse-gas-
emission scenario; A1B, a medium-emission scenario; and B1, a
low-emissions scenario. The SRES scenarios are described in detail
in Nakicenovic et al. (2000).

Model output data are not available for all combinations of GCM
and scenario for the basic ‘‘core’’ variables that are needed to drive
many crop and pasture models (precipitation, maximum daily
temperature and minimum air temperature). From CMIP3 and
the Climate and Environmental Retrieval and Archive (CERA) data-
base at the German Climate Research Centre (DKRZ), we found
complete data for the three scenarios for a total of six GCMs (Ta-
ble 1). As other data become available in the future, they can sub-
sequently be included in the software.

SRES emission scenarios are considerably different in terms of
projected changes in temperatures and rainfall for different re-
gions. Table 2 shows the projected mean impacts on global tem-
perature of these different scenarios from the IPCC multi-model
ensemble for different time-slices. Although differences between
the three scenarios in global warming impacts to 2050 are limited,
thereafter these become considerable. Temperature shifts also vary
substantially by region. Many GCMs project mean average temper-
ature increases to 2050 for the East Africa region, for example, that
are larger than the global mean: for scenario A2, of between about
1.5–2.5 �C. In addition to differences between the emission scenar-
ios used to drive the climate models, the GCMs themselves can
vary greatly. It is straightforward to plot rainfall and temperature
patterns from different GCMs using the data and tool on the web-
site www.ipcc-data.org, for example. GCMs differ in consistency
for regional climate projections, particularly related to precipita-
tion (IPCC, 2007).

The general scheme of the analysis here is as follows. First, we
obtained data from the GCMs for five time slices: 1991–2010 (de-
noted ‘‘2000’’), 2021–2040 (denoted ‘‘2030’’), 2041–2060 (denoted
‘‘2050’’), 2061–2080 (denoted ‘‘2070’’) and 2081–2100 (denoted
‘‘2090’’) for average monthly precipitation and daily maximum
(Tmax) and minimum (Tmin) air temperatures. Processing of these
data resulted in calculated mean monthly climatologies for each
time slice and for each variable from the original daily time series
produced by each GCM. The mean monthly fields had been inter-
polated, by the original agencies from whom we obtained the data,
from the original resolution of each GCM to 0.5� latitude–longitude

using conservative remapping, which preserves the global aver-
ages. Second, we calculated monthly climate anomalies (absolute
changes) for monthly rainfall, mean daily maximum temperature
and mean daily minimum temperature, for each time slice relative
to the baseline climatology (1961–1990). The point of origin
was designated 1975, being the mid point of the 30-year climate
normals.

Third, we fitted a functional relationship to the climate projec-
tions for the variables of interest through time, so that we could
interpolate the projections to any year. We inspected the responses
of the chosen models and found that they were considerably more
complicated than those of the third approximation models used in
the previous exercise (Thornton et al., 2006). There it was found by
stepwise regression that a cubic term was superfluous to describe
the projections over time. In the current case, we made a prelimin-
ary investigation of the functional forms of the projections using
cluster analysis. All pixels from each of the climate models for sce-
nario A1B were clustered for precipitation, Tmax and Tmin using the
values of the five periods as clustering variates. We used a leader
clustering algorithm (Hartigan, 1975) to cope with the volume of
data. The threshold was set to produce from 40 to 100 clusters,
which were ranked by the number of pixels, and the cluster means
were used to inspect the functional form. The first five clusters
normally covered 80–90% of the pixels for any given model.

We fitted polynomials through the cluster means by date (con-
strained through the origin) and this showed that in many cases a
quadratic fit over time would have sufficed but in numerous cases
only a fourth-order polynomial would suffice. We therefore
decided to fit fourth-order polynomials throughout. We made
these fits for all models at all scenarios and made another set for
the average of the six models. We constructed world maps of the
residual surfaces for every time period for each variate and for each
model and scenario. Visual inspection of every map showed that
deviations from the fitted curves were within expectations for all
the models. Finally, we condensed the polynomial coefficients into
a data file structure for ready retrieval on a pixel-by-pixel basis (at
a resolution of 30 arc-min) for use in subsequent operations:
downscaling the anomalies to a higher resolution, and then gener-
ating daily weather data that are characteristic, to some extent, of
the future climatologies produced, using a stochastic daily weather
generator.

2.2. Generating daily data: MarkSim�

MarkSim� is a third-order markov rainfall generator (Jones and
Thornton, 1993, 1997, 1999, 2000; Jones et al., 2002), which has
been developed over 20 years. It was not designed as a GCM
downscaler, but it does now work as such, employing both
stochastic downscaling and climate typing.

The basic algorithm of MarkSim is a daily rainfall simulator that
uses a third-order markov process to predict the occurrence of a
rain day. A third-order model was shown to be necessary for

Table 1
Atmosphere-Ocean General Circulation Models (AOGMCs) used in the work (details from Randall et al., 2007).

Model name (Date) Institution Reference Resolution Code

BCCR_BCM2.0 (2005) Bjerknes Centre for Climate Research (University of Bergen, Norway) Furevik et al. (2003) 1.9 � 1.9� BCC
CNRM-CM3 (2004) Météo-France/Centre National de Recherches Météorologiques, France Déqué et al. (1994) 1.9 � 1.9� CNR
CSIRO-Mk3.5 (2005) Commonwealth Scientific and Industrial Research Organisation (CSIRO)

Atmospheric Research, Australia
Gordon et al. (2002) 1.9 � 1.9� CSI

ECHam5 (2005) Max Planck Institute for Meteorology, Germany Roeckner et al. (2003) 1.9 � 1.9� ECH
INM-CM3_0 (2004) Institute for Numerical Mathematics, Moscow, Russia Diansky and Volodin (2002) 4.0 � 5.0� INM
MIROC3.2 (medres) (2004) Center for Climate System Research (University of Tokyo),

National Institute for Environmental Studies,
and Frontier Research Center for Global Change (JAMSTEC), Japan

K-1 Model Developers (2004) 2.8 � 2.8� MIR

Ensemble average Average climatology of the above 6 AOGCMs – – AVR
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