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a b s t r a c t

Because relevant historical data for farms are inevitably sparse, most risk programming studies rely on
few observations of uncertain crop and livestock returns. We show the instability of model solutions with
few observations and discuss how to use available information to derive an appropriate multivariate dis-
tribution function that can be sampled for a more complete representation of the possible risks in risk-
based models. For the particular example of a Norwegian mixed livestock and crop farm, the solution is
shown to be unstable with few states of nature producing a risky solution that may be appreciably sub-
optimal. However, the risk of picking a sub-optimal plan declines with increases in number of states of
nature generated by Latin hypercube sampling.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

There are many reported studies of risk programming for farm
planning. Such analyses may be performed to support a decision
by an individual farmer about what farm plan to follow next year,
i.e. what areas of each crop to plant and what numbers of various
types of livestock to run (e.g., Olson and Eidman, 1992; Epplin and
Al-Sakkaf, 1995; Pannell and Nordblom, 1998), or they may be
undertaken to evaluate some proposed innovation such as a new
technology or new policy instrument such as crop insurance (e.g.,
Krause et al., 1990; Dorward, 1999; Lien and Hardaker, 2001; Tork-
amani, 2005).

The form of risk programming models ranges from quadratic
risk programming using a mean–variance (E,V) approximation of
expected utility (Markowitz, 1952; Freund, 1956) to direct maxi-
mization of expected utility via nonlinear programming (see
Hardaker et al., 2004, Chapter 9 for an overview).

A common feature of most risk programming studies is that the
representation of the risk and dependency among per unit activity

net revenues is based on 10 or fewer observations, typically for-
matted as states of nature matrices. The reason is that, in practice,
the required historical data for a large number of years may not be
available for the farm being analysed, or, even when the records
exist, the relevance of the older information is judged to be low
as the result of changed circumstances.

In regard to quadratic (E,V) risk programming applications
based on sparse data, some studies have looked at the reliability
of estimated optimal farm plans (e.g., Chalfant et al., 1990; Lence
and Hayes, 1995) and the confidence regions in the mean–standard
deviation space (e.g., Collender, 1989). Unsurprisingly, all these
studies demonstrate that sparse data reduce the reliability of the
risk programming results.

In this paper we use utility efficient programming (UEP) (Lam-
bert and McCarl, 1985; Patten et al., 1988) to illustrate an approach
aimed at improving reliability of results based on limited informa-
tion in farm risk programming. Examples of the use of UEP for farm
planning include Nanseki and Morooka (1991), Kobzar (2006) and
Flaten and Lien (2007). The starting point is a sparse data set from
which a multivariate probability function is specified by means of a
multivariate kernel density estimation procedure. Then sampling
from that distribution by two different methods is used to explore
the stability and reliability of the solutions to a risk programming
model. We demonstrate the approach using an example of a typical
Norwegian mixed farm.
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2. The utility efficient programming model used

The UEP for the case farm was formulated as follows:

max E½U� ¼ pUðz; rÞ; ð1Þ

subject to:

Ax 6 b ð2Þ
Cxþ PPx� LFx� Iz ¼ f ð3Þ
x P 0 ð4Þ

where, E[U] is expected utility, p is a vector of probabilities for
states of nature, U(z,r) is a vector of utilities of net income (NI) by
state of nature where the utility function is defined for a measure
of risk aversion, r, A is a matrix of technical coefficients, x is a vector
of activity levels, b is a vector of resource stocks, C is a matrix of
gross margins, GMs, (without public payment schemes) for S states
of nature, PP is a matrix of public payment schemes for S states of
nature, LF is a matrix of fodder costs for livestock activities (i.e.
the model finds the least-cost supply of feed) for S states of nature,
I is an identity matrix, z is a vector of net incomes for each state of
nature S, and f is a vector of fixed costs.

2.1. Utility and certainty equivalent

Because we assume that the farmer is risk-averse, we are re-
stricted to using a concave form of the utility function with
U0ðzÞ > 0, and U00ðzÞ < 0. Although in principle any kind of utility
function satisfying these conditions can be used, we used the neg-
ative exponential function:

E Uðz; rÞ½ � ¼
XS

s¼1

ps 1� exp �r � zsð Þf g ð5Þ

where r is a non-negative parameter representing the coefficient of
absolute risk aversion with respect to net income. We assume that
all states of nature are equi-probable so that ps = 1/S.

This function exhibits constant absolute risk aversion (CARA),
which is a reasonable approximation to the real but unknown util-
ity function for wealth for variations in transitory (annual) income
(Hardaker et al., 2004, pp 110–113). We initially assume that the
farmer’s relative risk aversion with respect to wealth rr(w) = 2,
implying moderate risk aversion. However, we do not measure
utility and risk aversion in terms of wealth, but in terms of transi-
tory income (i.e. a bad or good result in one year has little effect on
wealth and hence on income levels in subsequent years). Since we
use a negative exponential utility function in terms of transitory
income, z, we need a relationship between rr(w) and r. Assuming
asset integration, Hardaker et al. (2004, Chapter 3) show that

r ¼ rrðwÞ=w ð6Þ

The level of the farmer’s wealth (net assets), w, is assumed to be
NOK (Norwegian kroner) 2 million, so a value of r = 2/
2000,000 = 0.000001 was used as the farmer’s degree of absolute
risk aversion in the main part of the analysis.

We converted the expected utility of net income of any farm
plan to the corresponding certainty equivalent, CE, by taking the
inverse of the utility function. While the utility function maps in-
come to utility, the inverse function maps utility to income, i.e.

CEðz; rÞ ¼ � ln 1� E Uðz; rÞ½ �f g=r ð7Þ

The values of the CEs are readily interpreted because, unlike utility
values, they are expressed in money terms.

To explore the effect of degree of risk aversion on the results, we
later set the value of rrðwÞ ¼ 0 and hence r = 0, i.e. an extreme va-
lue implying indifference to risk. When r = 0, Eq. (7) is no longer
relevant and the CE is equal to the expected income.

2.2. Activities and constraints

The case farm was chosen to reflect the conditions of a typical
lowland farm in Eastern Norway. The main activities in the UEP
model of the case farm are

(1) Crop activities: barley, oats, wheat, potatoes, oilseed, grass
seed and carrots.

(2) Livestock activities: dairy cows and sheep.
(3) Fodder crop activities: root crops, green fodder and grassland.
(4) Concentrate feed activities: three different types of concen-

trate feed, with different levels of protein, are included. Ani-
mal feed requirements are assumed fixed per head, but
choice of feed types is possible.

(5) Hire labour and rent land activities: provision is made to hire
labour at the current wage rate of NOK 135 per hour (h). It is
assumed that labour can be hired at any time of year. There
is also provision to rent in land at NOK 3720 per ha, which is
the average cost of renting land in Eastern Norway.

(6) Public payment schemes: the prevailing payment schemes
(2004/2005) in Norway are included (NILF, 2005). Farmers
are paid per livestock head or per ha of crop, with rates vary-
ing according to type of livestock or crop. Rates of payments
decline with increases in the scale of production.

The main constraints are as follows:

(1) Land constraint: A farm size of 20 ha is assumed, which is
close to the average farm size in the lowlands of Eastern
Norway.

(2) Rotational limits: to avoid the build-up of pests and diseases
we assume that no more than one-third of the area can be
potatoes, and a maximum of one-sixth of the area can be
carrots.

(3) Marketing limit: grass seed is regulated by production con-
tracts. Because of the many requirements that must be sat-
isfied to get a contract, we restrict grass seed production
to 3 ha.

(4) Milk quota constraint: the annual milk quota of the farm is
set at 100,000 l, which effectively sets an upper limit on
the number of dairy cows.

(5) Root crop limit: because, as ruminants, cows and sheep need
a minimum proportion of coarse fodder in their feed, root
crops for fodder are limited to no more than 25% of the
coarse fodder produced, measured in terms of livestock feed
units.

(6) Seasonal labour constraints: there is one constraint on labour
availability in each of the four seasons of spring, summer,
autumn and winter. The spring season covers April and
May (spring work period). The summer season is June and
July, while the autumn period covers August, September
and October (harvesting period). The winter season is from
November to March. Labour availability is calculated on
the basis of one full-time owner operator and one part-time
family worker. It is assumed that the maximum amount of
family labour available is 3600 h per year, distributed as
600 h in the spring and summer seasons, 900 h in the
autumn season and 1500 h in the winter season. Technical
input–output coefficients for seasonal labour requirements
per unit of the activities are assumed fixed and are based
on data from NILF (2005).

(7) Hire labour constraint: family labour may be supplemented
with hired labour at times of peak need. The maximum
amount of hired labour per year is set at 300 h, since it is
sometimes difficult to get qualified farm workers in this area
and unqualified workers require too much supervision.
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