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a b s t r a c t

Proper estimation of model parameters is required for ensuring accurate model predictions and good
model-based decisions. The generalized likelihood uncertainty estimation (GLUE) method is a Bayesian
Monte Carlo parameter estimation technique that makes use of a likelihood function to measure the
closeness-of-fit of modeled and observed data. Various likelihood functions and methods of combining
likelihood values have been used in previous studies. This research was conducted to determine the
effects of using previously reported likelihood functions in a GLUE procedure for estimating parameters
in a widely-used crop simulation model. A factorial computer experiment was conducted with synthetic
measurement data to compare four likelihood functions and three methods of combining likelihood val-
ues using the CERES-Maize model of the Decision Support System for Agrotechnology Transfer (DSSAT).
The procedure used an arbitrarily-selected parameter set as the known ‘‘true parameter set” and the
CERES-Maize model to generate true output values. Then synthetic observations of crop variables were
randomly generated (four replicates) by using the simulated true output values (dry yield, anthesis date,
maturity date, leaf nitrogen concentration, soil nitrate concentration, and soil moisture) and adding a ran-
dom observation error based on the variances of corresponding field measurements. The environmental
conditions were obtained from a sweet corn (Zea mays L.) experiment conducted in 2005 in northern
Florida. Results showed that the method of combining likelihood values had a strong influence on param-
eter estimates. The combination method based on the product of the likelihoods associated with each set
of observations reduced the uncertainties in posterior distributions of parameter estimates most signif-
icantly. It was also found that the likelihood function based on Gaussian probability density function was
the best among those tested. This combination accurately estimated the true parameter values, suggest-
ing that it can be used when estimating CERES-Maize model parameters for real experiments.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Proper estimation of model parameters is required for ensuring
accurate model predictions (Makowski et al., 2002). Modeling of
complex environmental systems generally involves the indirect
identification of model components or parameters by posing an in-
verse problem. Often, such inverse problems involve multiple
parameters and observations that are only indirectly related to
the parameters of interest, or which may be at different scales to
the variables and parameters used in distributed predictions. There
are many methods for estimating parameters using inverse model-
ing methods. Bayesian approaches can be used to estimate param-
eters using two types of information, a sample of data and prior
information about parameter values. Results from a Bayesian
method are probability distributions of parameter values and pre-
dicted outputs (Makowski et al., 2006a).

Bayesian methods are becoming increasingly popular for esti-
mating parameters of complex mathematical models (Campbell
et al., 1999). The Generalized Likelihood Uncertainty Analysis
(GLUE) methodology (Beven and Binley, 1992), one such Bayesian
method, allows information from different types of observations to
be combined to estimate probability distributions of parameter
values and model predictions (Lamb et al., 1998). Many parameter
sets are generated from specified prior distributions of parameters
and then used to simulate outputs by Monte Carlo simulation. The
performance of each parameter set in predicting observed model
states is evaluated via a likelihood measure that is used to weight
the predictions from the different parameter sets. The GLUE meth-
od transforms the problem of searching for an optimum parameter
set into a search for sets of parameter values that would give reli-
able simulations for a range of model inputs (Candela et al., 2005).

Parameters estimated using any inverse modeling approach are
uncertain and subject to equifinality (e.g. Beven and Binley, 1992;
Beven and Freer, 2001; Beven, 2006). Equifinality refers to the sit-
uation where the likelihood values are equal for two or more
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parameter values, and one cannot select a best one from these two
or more values. It can be argued on grounds of physical theory that
there may be sufficient interactions among the components of a
system that, unless the detailed characteristics of these compo-
nents are specified independently, many representations may be
equally acceptable. This is particularly true of those parameters
to which the model is not sensitive in a particular environment.
For this reason, a sensitivity analysis is needed to select parameters
to which the model is sensitive for the range of experiments being
used before attempting to estimate them using inverse modeling
methods. One implication of equifinality is that the uncertainty
associated with the use of models might be wider than is usually
considered.

As with any model parameter estimation method, the GLUE
method requires the definition of some measure of goodness-of-
fit or likelihood. Beven and Binley (1992) pointed out that various
likelihood measures might be appropriate in a given application.
For example, Romanowicz et al. (1994, 1996) used a likelihood
measure based on an autocorrelated Gaussian error model; Beven
and Binley (1992) used a likelihood measure based on inverse error
variance with a shaping factor N; Freer et al. (1996) suggested a
likelihood measure based on Nash and Sutcliffe efficiency criterion;
and Keesman and Van Straten (1989, 1990) used a likelihood mea-
sure based on scaled maximum absolute residuals. However, Ste-
dinger et al. (2008) criticized the use of an arbitrary likelihood
function. The choice of a likelihood function is critical and needs
to be a reasonable description of the distribution of model errors
for the statistical inference and resulting uncertainty and predic-
tion intervals to be valid. If an arbitrary likelihood measure is
adopted that does not reasonably reflect the distribution of model
errors, then GLUE may generate arbitrary results without statistical
validity that should not be used in scientific work.

With multiple observations and multiple types of observations,
likelihood values for each observation must be combined into an
overall value for each candidate parameter set (Beven and Binley,
1992). Available methods of combining likelihood values include
multiplication (e.g. Beven and Binley, 1992), weighted addition
(Zak et al., 1997), pseudomaximum likelihood measure (Van Stra-
ten, 1983), fuzzy union, fuzzy interaction, and weighted fuzzy
combination (Aronica et al., 1998). Beven and Freer (2001) and
Beven and Binley (1992) suggested that when a likelihood ap-
proach is being considered, the choice of method of combining
likelihood values is subjective. However, when the GLUE method
is used with a model for the first time, it is important to make sure
that the choice of likelihood measure and combination method can
produce reliable model parameters.

The CERES-Maize model (Jones and Kiniry, 1986; Ritchie, 1998;
Hoogenboom et al., 2003) is a maize (Zea mays L.) crop growth
model in the cropping system model (CSM) that is in the Decision
Support System for Agrotechnology Transfer (DSSAT) (Jones et al.,
2003; Tsuji et al., 1998). The DSSAT-CSM incorporates all crops
as modules using a single soil model. Hereafter, CERES-Maize will
be used to refer to the model used in this study. This model has
many parameters that characterize crop and soil processes, a num-
ber of which usually need to be estimated using field experiments.
Over the years, a number of methods have been used to estimate
parameters for the DSSAT models, including the simplex method
(Grimm et al., 1993), simulated annealing (Mavromatis et al.,
2002), sequential search software (Hunt et al., 1993), and even vi-
sual methods. Each of these methods has its own advantages and
limitations. Our main reasons for selecting the GLUE method for
this study were that it can help us understand uncertainties in
the parameters and how those uncertainties affect predictions
and it is relatively simple and straightforward to implement.

In using this method for the first time with the CERES-Maize
model, the question arises as to how much the different likelihood

measures and combination methods influence the results of
parameter estimation. The objective of the study was to answer
this question for this widely-used crop model. We evaluated the
influence of four different likelihood functions and three combina-
tion methods in GLUE on the parameter estimates for the CERES-
Maize model.

2. Materials and methods

2.1. CERES-Maize model

Crop growth and development are simulated by the CERES-
Maize model in DSSAT V4.0 (Hoogenboom et al., 2003) with a daily
time step from planting to maturity using physiological process
relationships that describe the responses of maize to soil and envi-
ronmental conditions. Potential growth is dependent on photosyn-
thetically active radiation and its interception, whereas actual
biomass production on any day is constrained by suboptimal tem-
peratures, soil water deficits, and nitrogen deficiencies (Ritchie and
Godwin, 1989; Ritchie, 1998).

There are four types of input data to the model: weather, plant,
soil, and management. The weather input data are daily sum of
global radiation (MJ m�2), daily minimum and maximum air tem-
peratures (�C), and daily sum of precipitation (mm). Plant parame-
ters and physiological characteristics are given in the form of
genetic coefficients, which describe physiological processes such
as development, photosynthesis, and growth for individual crop
varieties in response to soil, weather, and management during a
season. Soil inputs describe the physical, chemical, and morpholog-
ical properties of the soil surface and each soil layer within the root
zone. The management information includes planting density, row
spacing, planting depth, irrigation, application of fertilizer, etc.
(Ritchie, 1998).

2.2. Soil parameters and genetic coefficients

There are usually many parameters and inputs in complex crop
simulation models. Each of these parameters and inputs is subject
to errors. Ideally, one would directly measure all inputs and
parameters, but this is not possible in many cases (Bechini et al.,
2006). Furthermore, uncertainties in some parameters are likely
to cause more variations in simulated results than others. Thus, a
common strategy is to select a subset of parameters to estimate
using sensitivity analysis, and fixing the others to their nominal
values (Makowski et al., 2006a,b; Monod et al., 2006; Wallach
et al., 2001). Through a global sensitivity analysis with one-at-a-
time (OAT) method (Morris, 1991), He (2008) selected the most
sensitive genetic and soil parameters (Table 1) relative to their
influence on CERES-Maize model predictions of dry matter yield
and cumulative nitrogen leaching for the growing conditions in
this study. Other parameters or inputs may be important for differ-
ent environmental and management conditions, and the sensitivity
analysis would need to be repeated for other experiments.

The selected soil parameters (SLLL, SDUL, and SSAT) define soil
water holding capacity and influence the amount of available
water in the soil profile on a day to day basis. Parameters SLRO
and SLDR influence the amount of soil water runoff and water
drained from the soil profile. Parameter SLPF represents the effect
of other limiting soil factors that reduce crop growth. Genetic coef-
ficients P1 and P5 control the phenological development of the
crop through their effects on anthesis and maturity dates. Coeffi-
cient PHINT influences both phenological development and yield.
See Jones and Kiniry (1986) and Ritchie (1998) for more details
regarding these parameters in the CERES-Maize model.
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