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a b s t r a c t

In recent years, evolutionary techniques have been widely used to search for the global optimum of com-
binatorial non-linear non-convex problems. In this paper, we present a new algorithm, named fuzzy
Multi-Objective Particle Swarm Optimization (f-MOPSO) to improve conjunctive surface water and
groundwater management. The f-MOPSO algorithm is simple in concept, easy to implement, and compu-
tationally efficient. It is based on the role of weighting method to define partial performance of each point
(solution) in the objective space. The proposed algorithm employs a fuzzy inference system to consider
all the partial performances for each point when optimizing the objective function values. The f-MOPSO
algorithm was compared with two other well-known MOPSOs through a case study of conjunctive use of
surface and groundwater in Najafabad Plain in Iran considering two management models, including a
typical 12-month operation period and a 10-year planning horizon. Overall, the f-MOPSO outperformed
the other MOPSO algorithms with reference to performance criteria and Pareto-front analysis while
nearly fully satisfying water demands with least monthly and cumulative groundwater level (GWL) vari-
ation. The proposed algorithm is capable of finding the unique optimal solution on the Pareto-front to
facilitate decisions to address large-scale optimization problems.
� 2016 International Association for Hydro-environment Engineering and Research, Asia Pacific Division.
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1. Introduction

Conjunctive use of surface water and groundwater resources is
commonly practiced in arid and semi-arid regions of the world to
meet the growing water demand of urban, agricultural, and indus-
trial users, while reducing climate change related water scarcity
(Peralta et al., 1995; Marino, 2001; Schoups et al., 2006;
Medellin-Azuara et al., 2008; Safavi et al., 2010; Connell-Buck
et al., 2011;Mirchi et al., 2013).While surfacewater often has lower
extraction cost as compared with groundwater withdrawal, it has
higher probability of supply failure due to hydrologic variability,
justifying the extensive use of more costly but reliable groundwater
resources (Burt, 1964; O’Mara, 1988; Fisher et al., 1995; Yang et al.,
2009), especially in arid areas of the world. Using both resources
conjunctively can increase system reliability by decreasing water
supply fluctuations that may disrupt day-to-day activities of users
and cause economic loss (Montazar et al., 2010).

Different approaches and techniques have been applied to opti-
mize the conjunctive use of surface water and groundwater
(Vedula et al., 2005), including linear programming, dynamic pro-
gramming, hierarchical optimization, non-linear programming and
evolutionary algorithms. Classical optimization methods are typi-
cally based on gradient search techniques. The numerical estima-
tion of the gradients is computationally intensive and can be
applied only when the objective functions are differentiable and
continuous in domain. Furthermore, these conventional methods
are not applicable when searching for the global optimum of com-
binatorial non-linear non-convex problems. To address these
drawbacks, population-based evolutionary techniques have been
employed along with simulation models in the last four decades
to develop efficient conjunctive management models (Maddock,
1974; Peralta et al., 1988; Willis et al., 1989; Ibanez-Castillo
et al., 1997; Karamouz et al., 2004; Safavi et al., 2010; Singh and
Panda 2013; Safavi and Esmikhani, 2013).

Bazargan-Lari et al. (2009) developed a conflict resolution
methodology for conjunctive use of water resources by first gener-
ating trade-off curves using a multi-objective genetic algorithm,
and then selecting the best non-dominated solution using the
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Young conflict resolution theory (Young, 1993). Marques et al.
(2010) applied a two-stage quadratic programming model to max-
imize economic benefits of conjunctive use from crops, irrigation
technology, the areas under permanent and annual crops, and sur-
face water supply. They assumed groundwater withdrawal is con-
strained by artificial recharge of the aquifer, while also limiting the
surface water supply in each year to a ‘‘sustainable” annual
amount. A set of hydrologic stochastic events with respective prob-
ability of occurrence were also considered to address uncertain cli-
mate change conditions. Rezapour Tabari and Soltani (2013)
developed a multi-objective model for maximizing the reliability
of an irrigation system’s water supply, while minimizing the cost,
using non-dominated sorting genetic algorithm (NSGA-II) to pro-
vide optimal compromising objectives. Peralta et al. (2014) used
a simulation-optimization conjunctive use model. They applied
an artificial neural network model to simulate various flow interac-
tions, as well as an NSGA model to optimize water allocations by
maximizing water supply, and hydropower production, while min-
imizing the operation costs of surface water transfer and ground-
water extraction.

Due to multi-objective nature of most real-world water man-
agement problems with conflicting and/or incommensurable
objectives (Madani and Lund, 2011), developing efficient and
robust multi-objective water resources system optimization tech-
niques remains an active research area. Traditional multi-
objective optimization approaches such as weighting and e-
constraint methods can produce non-dominated solutions by
transforming the multi-objective problems to single-objective ones
based on bottom-up information flow. By contrast, in an evolution-
ary optimization model, the top-down information flow through
implementation of preference methods is also needed to detect a
unique optimum solution (Abido, 2010; Fallah-Mehdipour et al.,
2011).

Particle Swarm Optimization (PSO) algorithm (Kennedy and
Eberhart, 1995) is the most commonly used stochastic
population-based evolutionary computation technique inspired
by the evolution of nature (Kennedy and Eberhart, 1995). Com-
pared to other meta-heuristic techniques (e.g., genetic algorithm),
PSO has a more flexible and well-balanced mechanism to enhance
and adapt the global and local exploration, needing fewer particles
(solutions) to provide the required diversity and faster conver-
gence rate (Abido, 2010). A Vector Evaluated PSO (VEPSO) was
developed by Parsopoulos and Vrahatis (2002) based on the con-
cept of Vector Evaluated Genetic Algorithm (VEGA) to perform
multi-objective optimization. VEPSO uses one swarm for each
objective and the best particle of each swarm is used as the global
best particle to determine particle velocities and positions. Hu and
Eberhart (2002) presented a multi-objective PSO (MOPSO) with a
dynamic neighborhood strategy to obtain the global best for each
particle in bi-objective problems. In this method, the global best
particle in each stage is the local optimum among all neighbors
selected in the previous stage with respect to the other objective
value. However, this process poses limits to algorithm performance
due to multi-objectivity of the problem, increasing the conver-
gence rate without finding the global best particle (Abido, 2010).

A suite of MOPSO methods have been introduced in the past
two decades. Coello and Lechuga (2002) proposed a MOPSO
method based on investigation of externally archived non-
dominated solutions. In this MOPSO, the best solution in the
archive with the smallest density value is assigned the maximum
probability to be found as the global best by imposing a selection
operator similar to the roulette-wheel selection operator. To find
the personal best particle in this MOPSO, the new position is
selected only if it dominates the old position and in case of non-
dominance of either position, one of them is randomly selected
as the personal best position. Performance-wise, the main draw-

back of these MOPSOs results from neglecting the fitness among
the non-dominated solutions, the dominance criteria, and the
way to consider density of solutions. Mostaghim and Teich
(2003a) proposed a sigma method in which the sigma vector for
each particle is the gradient of a line drawn between that particle
and the origin. The algorithm selects the guide (global best) parti-
cle by finding the nearest non-dominated member in terms of
Euclidian distance between that member’s sigma value and that
of the swarm member, assigning each particle a particular global
best. This process may cause premature convergence in some cases
such as multi-frontal problems (Abido, 2010). Furthermore,
Mostaghim and Teich (2003b) proposed using e-dominance in
MOPSO. This method limits the number of non-dominated solu-
tions in the archive which is very influential in the algorithm run-
ning time, rate of convergence and diversity (Abido, 2010). They
also introduced a new method which uses the property of moving
particles in MOPSO to divide the population into sub-swarms
(Mostaghim and Teich, 2004), trying to cover the gaps between
the non-dominated solutions found in the initial run.

Wei and Wang (2006) proposed a novel MOPSO algorithm in
which a three-parent crossover operator was suggested in order
to move the solutions toward the feasible region, and a dynami-
cally changing inertia weight was designed to keep the diversity
of the swarm and escape from local optima. Ireland et al. (2006)
introduced a centroid method to construct the guide particle based
upon a distance-weighted average of the archive members. They
concluded that the centroid method generates more diversity in
the Pareto-front with slow convergence as compared with the
sigma method which has a tendency to converge too rapidly with
very little diversity. Thus, they developed a hybrid centroid/sigma
algorithm as a more efficient and robust MOPSO algorithm. Reddy
and Kumar (2007a) proposed an efficient multi-objective PSO algo-
rithm, in which a variable size external repository is employed to
store non-dominated solutions. They also applied a crowding dis-
tance operator to measure the amount of diversity of the stored
solutions whenever the size of the repository exceeds desired size
while doing mutation on the solutions using a strategy called
elitist-mutation whenever needed. Reddy and Kumar (2007b)
employed their proposed EM-MOPSO algorithm to solve a multi-
objective reservoir operation problem. Thereafter, they reduced
the obtained non-dominated solutions to a few representative
ones, applying a clustering technique to ease handling the solu-
tions. Finally for facilitating the decision-making, a pseudo-
weight vector was calculated for each objective over Pareto-front
points and the desired weight combination was extracted.
Cabrera and Coello (2010) proposed Micro-MOPSO to handle very
small population sizes using an auxiliary archive for storing non-
dominated solutions found throughout the search, and a final
archive for storing final non-dominated solutions. In this algo-
rithm, the global best particle (called the leader) is selected from
a sub-set of the final archive members with the best crowding dis-
tances. The neighborhood for creating the swarm is then selected
based on the smallest Euclidian distance to the leader particle,
while implementing a reinitialization process and a mutation oper-
ator to avoid stagnation.

Abido (2010) introduced an approach using two sets of non-
dominated solutions, i.e., a non-dominated local set to store the
non-dominated solutions obtained by the jth particle to the current
time (i.e., S�j ðtÞ) and a non-dominated global set to store the non-
dominated solutions obtained by all particles up to the current
time (i.e., S��ðtÞ). Then the individual distances between members
in S�j ðtÞ and members in S��ðtÞ are measured in the objective space.
If X�

j ðtÞ and X��
j ðtÞ are, respectively, members of S�j ðtÞ and S��ðtÞ that

give the minimum distance, they are selected as the personal best
and the global best of the jth particle. Liu and Zhao (2011) pro-
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